These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 37321965)

  • 1. Improved structure-related prediction for insufficient homologous proteins using MSA enhancement and pre-trained language model.
    Meng Q; Guo F; Tang J
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37321965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prior knowledge facilitates low homologous protein secondary structure prediction with DSM distillation.
    Wang Q; Wei J; Zhou Y; Lin M; Ren R; Wang S; Cui S; Li Z
    Bioinformatics; 2022 Jul; 38(14):3574-3581. PubMed ID: 35652719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved protein structure prediction with trRosettaX2, AlphaFold2, and optimized MSAs in CASP15.
    Peng Z; Wang W; Wei H; Li X; Yang J
    Proteins; 2023 Dec; 91(12):1704-1711. PubMed ID: 37565699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein multiple sequence alignment benchmarking through secondary structure prediction.
    Le Q; Sievers F; Higgins DG
    Bioinformatics; 2017 May; 33(9):1331-1337. PubMed ID: 28093407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-sequence protein structure prediction by integrating protein language models.
    Jing X; Wu F; Luo X; Xu J
    Proc Natl Acad Sci U S A; 2024 Mar; 121(13):e2308788121. PubMed ID: 38507445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepECA: an end-to-end learning framework for protein contact prediction from a multiple sequence alignment.
    Fukuda H; Tomii K
    BMC Bioinformatics; 2020 Jan; 21(1):10. PubMed ID: 31918654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seq-SetNet: directly exploiting multiple sequence alignment for protein secondary structure prediction.
    Ju F; Zhu J; Zhang Q; Wei G; Sun S; Zheng WM; Bu D
    Bioinformatics; 2022 Jan; 38(4):990-996. PubMed ID: 34849579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating deep learning, threading alignments, and a multi-MSA strategy for high-quality protein monomer and complex structure prediction in CASP15.
    Zheng W; Wuyun Q; Freddolino PL; Zhang Y
    Proteins; 2023 Dec; 91(12):1684-1703. PubMed ID: 37650367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-sequence protein structure prediction using supervised transformer protein language models.
    Wang W; Peng Z; Yang J
    Nat Comput Sci; 2022 Dec; 2(12):804-814. PubMed ID: 38177395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MSACompro: protein multiple sequence alignment using predicted secondary structure, solvent accessibility, and residue-residue contacts.
    Deng X; Cheng J
    BMC Bioinformatics; 2011 Dec; 12():472. PubMed ID: 22168237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. End-to-end learning of multiple sequence alignments with differentiable Smith-Waterman.
    Petti S; Bhattacharya N; Rao R; Dauparas J; Thomas N; Zhou J; Rush AM; Koo P; Ovchinnikov S
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36355460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving protein structure prediction using templates and sequence embedding.
    Wu F; Jing X; Luo X; Xu J
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36355462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unsupervisedly Prompting AlphaFold2 for Accurate Few-Shot Protein Structure Prediction.
    Zhang J; Liu S; Chen M; Chu H; Wang M; Wang Z; Yu J; Ni N; Yu F; Chen D; Yang YI; Xue B; Yang L; Liu Y; Gao YQ
    J Chem Theory Comput; 2023 Nov; 19(22):8460-8471. PubMed ID: 37947474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo protein design by inversion of the AlphaFold structure prediction network.
    Goverde CA; Wolf B; Khakzad H; Rosset S; Correia BE
    Protein Sci; 2023 Jun; 32(6):e4653. PubMed ID: 37165539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein language-model embeddings for fast, accurate, and alignment-free protein structure prediction.
    Weissenow K; Heinzinger M; Rost B
    Structure; 2022 Aug; 30(8):1169-1177.e4. PubMed ID: 35609601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PFASUM: a substitution matrix from Pfam structural alignments.
    Keul F; Hess M; Goesele M; Hamacher K
    BMC Bioinformatics; 2017 Jun; 18(1):293. PubMed ID: 28583067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving protein-protein interaction prediction using evolutionary information from low-quality MSAs.
    VĂ¡rnai C; Burkoff NS; Wild DL
    PLoS One; 2017; 12(2):e0169356. PubMed ID: 28166227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the role of evolutionary information for enhancing protein language model embeddings.
    Erckert K; Rost B
    Sci Rep; 2024 Sep; 14(1):20692. PubMed ID: 39237735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of multiple sequence alignment errors using complete-likelihood score and position-shift map.
    Ezawa K
    BMC Bioinformatics; 2016 Mar; 17():133. PubMed ID: 26992851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing structure and disorder prediction tools for
    Aubel M; Eicholt L; Bornberg-Bauer E
    F1000Res; 2023; 12():347. PubMed ID: 37113259
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.