BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 37322008)

  • 1. N-Acryloylindole-alkyne (NAIA) enables imaging and profiling new ligandable cysteines and oxidized thiols by chemoproteomics.
    Koo TY; Lai H; Nomura DK; Chung CY
    Nat Commun; 2023 Jun; 14(1):3564. PubMed ID: 37322008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications of Reactive Cysteine Profiling.
    Backus KM
    Curr Top Microbiol Immunol; 2019; 420():375-417. PubMed ID: 30105421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteome-wide structural analysis identifies warhead- and coverage-specific biases in cysteine-focused chemoproteomics.
    White MEH; Gil J; Tate EW
    Cell Chem Biol; 2023 Jul; 30(7):828-838.e4. PubMed ID: 37451266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profiling Cysteine Reactivity and Oxidation in the Endoplasmic Reticulum.
    Bechtel TJ; Li C; Kisty EA; Maurais AJ; Weerapana E
    ACS Chem Biol; 2020 Feb; 15(2):543-553. PubMed ID: 31899610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfhydryl-specific probe for monitoring protein redox sensitivity.
    Lee JJ; Ha S; Kim HJ; Ha HJ; Lee HY; Lee KJ
    ACS Chem Biol; 2014 Dec; 9(12):2883-94. PubMed ID: 25354229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expanding the ligandable proteome by paralog hopping with covalent probes.
    Zhang Y; Liu Z; Hirschi M; Brodsky O; Johnson E; Won SJ; Nagata A; Petroski MD; Majmudar JD; Niessen S; VanArsdale T; Gilbert AM; Hayward MM; Stewart AE; Nager AR; Melillo B; Cravatt B
    bioRxiv; 2024 Jan; ():. PubMed ID: 38293178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SP3-FAIMS-Enabled High-Throughput Quantitative Profiling of the Cysteinome.
    Desai HS; Yan T; Backus KM
    Curr Protoc; 2022 Jul; 2(7):e492. PubMed ID: 35895291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable Heteroaromatic Sulfones Enhance in-Cell Cysteine Profiling.
    Motiwala HF; Kuo YH; Stinger BL; Palfey BA; Martin BR
    J Am Chem Soc; 2020 Jan; 142(4):1801-1810. PubMed ID: 31881155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competitive profiling of ligandable cysteines in
    Schmidt C; Zollo M; Bonsignore R; Casini A; Hacker SM
    Chem Commun (Camb); 2022 May; 58(36):5526-5529. PubMed ID: 35420608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of reversibly oxidized protein cysteine thiols using protein structure properties.
    Sanchez R; Riddle M; Woo J; Momand J
    Protein Sci; 2008 Mar; 17(3):473-81. PubMed ID: 18287280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isotopically-Labeled Iodoacetamide-Alkyne Probes for Quantitative Cysteine-Reactivity Profiling.
    Abo M; Li C; Weerapana E
    Mol Pharm; 2018 Mar; 15(3):743-749. PubMed ID: 29172527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NHS-Esters As Versatile Reactivity-Based Probes for Mapping Proteome-Wide Ligandable Hotspots.
    Ward CC; Kleinman JI; Nomura DK
    ACS Chem Biol; 2017 Jun; 12(6):1478-1483. PubMed ID: 28445029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isotopic tagging of oxidized and reduced cysteines (iTORC) for detecting and quantifying sulfenic acids, disulfides, and free thiols in cells.
    Albertolle ME; Glass SM; Trefts E; Guengerich FP
    J Biol Chem; 2019 Apr; 294(16):6522-6530. PubMed ID: 30850396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of a Tunable Heterocyclic Electrophile 4-Chloro-pyrazolopyridine That Defines a Unique Subset of Ligandable Cysteines.
    Kim HR; Byun DP; Thakur K; Ritchie J; Xie Y; Holewinski R; Suazo KF; Stevens M; Liechty H; Tagirasa R; Jing Y; Andresson T; Johnson SM; Yoo E
    ACS Chem Biol; 2024 May; 19(5):1082-1092. PubMed ID: 38629450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global Assessment of Drug Target Engagement and Selectivity of Covalent Cysteine-Reactive Inhibitors Using Alkyne-Functionalized Probes.
    Rothweiler EM; Huber KVM
    Methods Mol Biol; 2023; 2706():191-200. PubMed ID: 37558950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles.
    Serafimova IM; Pufall MA; Krishnan S; Duda K; Cohen MS; Maglathlin RL; McFarland JM; Miller RM; Frödin M; Taunton J
    Nat Chem Biol; 2012 Apr; 8(5):471-6. PubMed ID: 22466421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids.
    Reisz JA; Bechtold E; King SB; Poole LB; Furdui CM
    FEBS J; 2013 Dec; 280(23):6150-61. PubMed ID: 24103186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SP3-FAIMS Chemoproteomics for High-Coverage Profiling of the Human Cysteinome*.
    Yan T; Desai HS; Boatner LM; Yen SL; Cao J; Palafox MF; Jami-Alahmadi Y; Backus KM
    Chembiochem; 2021 May; 22(10):1841-1851. PubMed ID: 33442901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring in vivo reversible cysteine oxidation in proteins using ICAT and mass spectrometry.
    García-Santamarina S; Boronat S; Domènech A; Ayté J; Molina H; Hidalgo E
    Nat Protoc; 2014 May; 9(5):1131-45. PubMed ID: 24743420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple method for enhancing the bioorthogonality of cyclooctyne reagent.
    Tian H; Sakmar TP; Huber T
    Chem Commun (Camb); 2016 Apr; 52(31):5451-4. PubMed ID: 27009873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.