These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37322086)

  • 21. The inhibitory activity of linalool against the filamentous growth and biofilm formation in Candida albicans.
    Hsu CC; Lai WL; Chuang KC; Lee MH; Tsai YC
    Med Mycol; 2013 Jul; 51(5):473-82. PubMed ID: 23210679
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hexyl-Aminolevulinate Ethosomes: a Novel Antibiofilm Agent Targeting Zinc Homeostasis in Candida albicans.
    Wang Y; Long W; Zhang F; Zhang M; Zeng K; Zhu X
    Microbiol Spectr; 2022 Dec; 10(6):e0243822. PubMed ID: 36301105
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thymus vulgaris essential oil and thymol inhibit biofilms and interact synergistically with antifungal drugs against drug resistant strains of Candida albicans and Candida tropicalis.
    Jafri H; Ahmad I
    J Mycol Med; 2020 Apr; 30(1):100911. PubMed ID: 32008964
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Zerumbone inhibits
    Shin DS; Eom YB
    Can J Microbiol; 2019 Oct; 65(10):713-721. PubMed ID: 31158320
    [No Abstract]   [Full Text] [Related]  

  • 25. Antibiofilm and antifungal activities of medium-chain fatty acids against Candida albicans via mimicking of the quorum-sensing molecule farnesol.
    Lee JH; Kim YG; Khadke SK; Lee J
    Microb Biotechnol; 2021 Jul; 14(4):1353-1366. PubMed ID: 33252828
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibitory effects of deoxynivalenol on pathogenesis of Candida albicans.
    Rajasekharan SK; Byun J; Lee J
    J Appl Microbiol; 2018 Nov; 125(5):1266-1275. PubMed ID: 29953693
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mild Heat Stress Affects on the Cell Wall Structure in Candida albicans Biofilm.
    Ikezaki S; Cho T; Nagao JI; Tasaki S; Yamaguchi M; Arita-Morioka KI; Yasumatsu K; Chibana H; Ikebe T; Tanaka Y
    Med Mycol J; 2019; 60(2):29-37. PubMed ID: 31155569
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of Candida albicans biofilm and hyphae formation by biocompatible oligomers.
    Lee JH; Kim YG; Lee J
    Lett Appl Microbiol; 2018 Aug; 67(2):123-129. PubMed ID: 29885256
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel antifungal is active against Candida albicans biofilms and inhibits mutagenic acetaldehyde production in vitro.
    Nieminen MT; Novak-Frazer L; Rautemaa W; Rajendran R; Sorsa T; Ramage G; Bowyer P; Rautemaa R
    PLoS One; 2014; 9(7):e101859. PubMed ID: 24991987
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polymeric micelles with anti-virulence activity against Candida albicans in a single- and dual-species biofilm.
    Albayaty YN; Thomas N; Ramírez-García PD; Davis TP; Quinn JF; Whittaker MR; Prestidge CA
    Drug Deliv Transl Res; 2021 Aug; 11(4):1586-1597. PubMed ID: 33713317
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new acridone with antifungal properties against Candida spp. and dermatophytes, and antibiofilm activity against C. albicans.
    de Oliveira DBC; Silva LB; da Silva BV; Borges TC; Marques BC; Dos Santos MB; de Oliveira LF; Bolzani VS; Rodrigues ARA; Regasini LO; Andrade AA
    J Appl Microbiol; 2019 Nov; 127(5):1362-1372. PubMed ID: 31297951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antifungal and antibiofilm activities of chromones against nine
    Lee J-H; Kim Y-G; Kim Y; Lee J
    Microbiol Spectr; 2023 Dec; 11(6):e0173723. PubMed ID: 37874140
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Shahina Z; Ndlovu E; Persaud O; Sultana T; Dahms TES
    Microbiol Spectr; 2022 Dec; 10(6):e0318322. PubMed ID: 36394350
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel antifungal is active against Candida albicans biofilms and inhibits mutagenic acetaldehyde production in vitro.
    Nieminen MT; Novak-Frazer L; Rautemaa V; Rajendran R; Sorsa T; Ramage G; Bowyer P; Rautemaa R
    PLoS One; 2014; 9(5):e97864. PubMed ID: 24867320
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidative stress induced by piperine leads to apoptosis in Candida albicans.
    Thakre A; Jadhav V; Kazi R; Shelar A; Patil R; Kharat K; Zore G; Karuppayil SM
    Med Mycol; 2021 Apr; 59(4):366-378. PubMed ID: 32658959
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carnosol inhibits the growth and biofilm of Candida albicans.
    Yang L; Sui Y; Zhong L; Ma T; Ma Z; Liu X
    J Mycol Med; 2022 May; 32(2):101234. PubMed ID: 34929524
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibitory effects of the essential oils α-longipinene and linalool on biofilm formation and hyphal growth of Candida albicans.
    Manoharan RK; Lee JH; Kim YG; Kim SI; Lee J
    Biofouling; 2017 Feb; 33(2):143-155. PubMed ID: 28155334
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition of Candida albicans biofilm formation and modulation of gene expression by probiotic cells and supernatant.
    James KM; MacDonald KW; Chanyi RM; Cadieux PA; Burton JP
    J Med Microbiol; 2016 Apr; 65(4):328-336. PubMed ID: 26847045
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Therapeutic potential of thiazolidinedione-8 as an antibiofilm agent against Candida albicans.
    Feldman M; Al-Quntar A; Polacheck I; Friedman M; Steinberg D
    PLoS One; 2014; 9(5):e93225. PubMed ID: 24796422
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A curcumin-sophorolipid nanocomplex inhibits Candida albicans filamentation and biofilm development.
    Rajasekar V; Darne P; Prabhune A; Kao RYT; Solomon AP; Ramage G; Samaranayake L; Neelakantan P
    Colloids Surf B Biointerfaces; 2021 Apr; 200():111617. PubMed ID: 33592455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.