BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 37322276)

  • 1. Adenine transversion editors enable precise, efficient A•T-to-C•G base editing in mammalian cells and embryos.
    Chen L; Hong M; Luan C; Gao H; Ru G; Guo X; Zhang D; Zhang S; Li C; Wu J; Randolph PB; Sousa AA; Qu C; Zhu Y; Guan Y; Wang L; Liu M; Feng B; Song G; Liu DR; Li D
    Nat Biotechnol; 2024 Apr; 42(4):638-650. PubMed ID: 37322276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient A·T-to-C·G Base Editing via Adenine Transversion Editors.
    Mahmood MA
    Cell Reprogram; 2023 Oct; 25(5):187-189. PubMed ID: 37725011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High performance TadA-8e derived cytosine and dual base editors with undetectable off-target effects in plants.
    Fan T; Cheng Y; Wu Y; Liu S; Tang X; He Y; Liao S; Zheng X; Zhang T; Qi Y; Zhang Y
    Nat Commun; 2024 Jun; 15(1):5103. PubMed ID: 38877035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing.
    Chen L; Zhu B; Ru G; Meng H; Yan Y; Hong M; Zhang D; Luan C; Zhang S; Wu H; Gao H; Bai S; Li C; Ding R; Xue N; Lei Z; Chen Y; Guan Y; Siwko S; Cheng Y; Song G; Wang L; Yi C; Liu M; Li D
    Nat Biotechnol; 2023 May; 41(5):663-672. PubMed ID: 36357717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TadA orthologs enable both cytosine and adenine editing of base editors.
    Zhang S; Yuan B; Cao J; Song L; Chen J; Qiu J; Qiu Z; Zhao XM; Chen J; Cheng TL
    Nat Commun; 2023 Jan; 14(1):414. PubMed ID: 36702837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity.
    Neugebauer ME; Hsu A; Arbab M; Krasnow NA; McElroy AN; Pandey S; Doman JL; Huang TP; Raguram A; Banskota S; Newby GA; Tolar J; Osborn MJ; Liu DR
    Nat Biotechnol; 2023 May; 41(5):673-685. PubMed ID: 36357719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ACBE, a new base editor for simultaneous C-to-T and A-to-G substitutions in mammalian systems.
    Xie J; Huang X; Wang X; Gou S; Liang Y; Chen F; Li N; Ouyang Z; Zhang Q; Ge W; Jin Q; Shi H; Zhuang Z; Zhao X; Lian M; Wang J; Ye Y; Quan L; Wu H; Wang K; Lai L
    BMC Biol; 2020 Sep; 18(1):131. PubMed ID: 32967664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient base editing with expanded targeting scope using SpCas9-NG in rabbits.
    Liu Z; Shan H; Chen S; Chen M; Song Y; Lai L; Li Z
    FASEB J; 2020 Jan; 34(1):588-596. PubMed ID: 31914687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of deaminase-free T-to-S base editor and C-to-G base editor by engineered human uracil DNA glycosylase.
    Tong H; Wang H; Wang X; Liu N; Li G; Wu D; Li Y; Jin M; Li H; Wei Y; Li T; Yuan Y; Shi L; Yao X; Zhou Y; Yang H
    Nat Commun; 2024 Jun; 15(1):4897. PubMed ID: 38851742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells.
    Kurt IC; Zhou R; Iyer S; Garcia SP; Miller BR; Langner LM; Grünewald J; Joung JK
    Nat Biotechnol; 2021 Jan; 39(1):41-46. PubMed ID: 32690971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Programmable deaminase-free base editors for G-to-Y conversion by engineered glycosylase.
    Tong H; Liu N; Wei Y; Zhou Y; Li Y; Wu D; Jin M; Cui S; Li H; Li G; Zhou J; Yuan Y; Zhang H; Shi L; Yao X; Yang H
    Natl Sci Rev; 2023 Aug; 10(8):nwad143. PubMed ID: 37404457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycosylase-based base editors for efficient T-to-G and C-to-G editing in mammalian cells.
    Ye L; Zhao D; Li J; Wang Y; Li B; Yang Y; Hou X; Wang H; Wei Z; Liu X; Li Y; Li S; Liu Y; Zhang X; Bi C
    Nat Biotechnol; 2024 Jan; ():. PubMed ID: 38168994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring C-to-G and A-to-Y Base Editing in Rice by Using New Vector Tools.
    Zeng D; Zheng Z; Liu Y; Liu T; Li T; Liu J; Luo Q; Xue Y; Li S; Chai N; Yu S; Xie X; Liu YG; Zhu Q
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Germline Editing of
    Thakkar N; Hejzlarova A; Brabec V; Dolezel D
    CRISPR J; 2023 Dec; 6(6):557-569. PubMed ID: 37917075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cas9-orthologue-mediated cytosine and adenine base editors recognizing NNAAAA PAM sequences.
    Li M; Zhao Y; Xue X; Zhong J; Lin J; Zhou J; Yu W; Chen J; Qiao Y
    Biotechnol J; 2023 May; 18(5):e2200533. PubMed ID: 36800529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved Dual Base Editor Systems (iACBEs) for Simultaneous Conversion of Adenine and Cytosine in the Bacterium Escherichia coli.
    Shelake RM; Pramanik D; Kim JY
    mBio; 2023 Feb; 14(1):e0229622. PubMed ID: 36625577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compact zinc finger base editors that edit mitochondrial or nuclear DNA in vitro and in vivo.
    Willis JCW; Silva-Pinheiro P; Widdup L; Minczuk M; Liu DR
    Nat Commun; 2022 Nov; 13(1):7204. PubMed ID: 36418298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycosylase base editors enable C-to-A and C-to-G base changes.
    Zhao D; Li J; Li S; Xin X; Hu M; Price MA; Rosser SJ; Bi C; Zhang X
    Nat Biotechnol; 2021 Jan; 39(1):35-40. PubMed ID: 32690970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction.
    Koblan LW; Doman JL; Wilson C; Levy JM; Tay T; Newby GA; Maianti JP; Raguram A; Liu DR
    Nat Biotechnol; 2018 Oct; 36(9):843-846. PubMed ID: 29813047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient C-to-G Base Editing with Improved Target Compatibility Using Engineered Deaminase-nCas9 Fusions.
    Chen S; Liu Z; Lai L; Li Z
    CRISPR J; 2022 Jun; 5(3):389-396. PubMed ID: 35238619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.