BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 37322276)

  • 21. Glycosylase base editors enable C-to-A and C-to-G base changes.
    Zhao D; Li J; Li S; Xin X; Hu M; Price MA; Rosser SJ; Bi C; Zhang X
    Nat Biotechnol; 2021 Jan; 39(1):35-40. PubMed ID: 32690970
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction.
    Koblan LW; Doman JL; Wilson C; Levy JM; Tay T; Newby GA; Maianti JP; Raguram A; Liu DR
    Nat Biotechnol; 2018 Oct; 36(9):843-846. PubMed ID: 29813047
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient C-to-G Base Editing with Improved Target Compatibility Using Engineered Deaminase-nCas9 Fusions.
    Chen S; Liu Z; Lai L; Li Z
    CRISPR J; 2022 Jun; 5(3):389-396. PubMed ID: 35238619
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two Compact Cas9 Ortholog-Based Cytosine Base Editors Expand the DNA Targeting Scope and Applications
    Wu S; Li L; Li M; Sun S; Zhao Y; Xue X; Chen F; Zhong J; Guo J; Qu Q; Wang X; Liu Z; Qiao Y
    Front Cell Dev Biol; 2022; 10():809922. PubMed ID: 35300420
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion.
    Li C; Zong Y; Wang Y; Jin S; Zhang D; Song Q; Zhang R; Gao C
    Genome Biol; 2018 May; 19(1):59. PubMed ID: 29807545
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Base Editing Landscape Extends to Perform Transversion Mutation.
    Molla KA; Qi Y; Karmakar S; Baig MJ
    Trends Genet; 2020 Dec; 36(12):899-901. PubMed ID: 32951947
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage.
    Gaudelli NM; Komor AC; Rees HA; Packer MS; Badran AH; Bryson DI; Liu DR
    Nature; 2017 Nov; 551(7681):464-471. PubMed ID: 29160308
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Base editors for simultaneous introduction of C-to-T and A-to-G mutations.
    Sakata RC; Ishiguro S; Mori H; Tanaka M; Tatsuno K; Ueda H; Yamamoto S; Seki M; Masuyama N; Nishida K; Nishimasu H; Arakawa K; Kondo A; Nureki O; Tomita M; Aburatani H; Yachie N
    Nat Biotechnol; 2020 Jul; 38(7):865-869. PubMed ID: 32483365
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generation of C-to-G transversion in mouse embryos via CG editors.
    Cao T; Liu S; Qiu Y; Gao M; Wu J; Wu G; Liang P; Huang J
    Transgenic Res; 2022 Oct; 31(4-5):445-455. PubMed ID: 35704130
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Double-Check Base Editing for Efficient A to G Conversions.
    Xin X; Li J; Zhao D; Li S; Xie Q; Li Z; Fan F; Bi C; Zhang X
    ACS Synth Biol; 2019 Dec; 8(12):2629-2634. PubMed ID: 31765564
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel base editor SpRY-ABE8e
    Li G; Cheng Y; Li Y; Ma H; Pu Z; Li S; Zhao Y; Huang X; Yao Y
    Mol Ther Nucleic Acids; 2023 Mar; 31():78-87. PubMed ID: 36618266
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Author Correction: Adenine transversion editors enable precise, efficient A•T-to-C•G base editing in mammalian cells and embryos.
    Chen L; Hong M; Luan C; Gao H; Ru G; Guo X; Zhang D; Zhang S; Li C; Wu J; Randolph PB; Sousa AA; Qu C; Zhu Y; Guan Y; Wang L; Liu M; Feng B; Song G; Liu DR; Li D
    Nat Biotechnol; 2024 Jun; 42(6):987. PubMed ID: 38658732
    [No Abstract]   [Full Text] [Related]  

  • 33. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis.
    Zhou C; Sun Y; Yan R; Liu Y; Zuo E; Gu C; Han L; Wei Y; Hu X; Zeng R; Li Y; Zhou H; Guo F; Yang H
    Nature; 2019 Jul; 571(7764):275-278. PubMed ID: 31181567
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Directed-evolution mutations enhance DNA-binding affinity and protein stability of the adenine base editor ABE8e.
    Zhu H; Wang L; Wang Y; Jiang X; Qin Q; Song M; Huang Q
    Cell Mol Life Sci; 2024 Jun; 81(1):257. PubMed ID: 38874784
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Editing Properties of Base Editors with SpCas9-NG in Discarded Human Tripronuclear Zygotes.
    Liu X; Zhou X; Li G; Huang S; Sun W; Sun Q; Li L; Huang X; Liu J; Wang L
    CRISPR J; 2021 Oct; 4(5):710-727. PubMed ID: 34661426
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly efficient A-to-G base editing by ABE8.17 in rabbits.
    Zhao D; Qian Y; Li J; Li Z; Lai L
    Mol Ther Nucleic Acids; 2022 Mar; 27():1156-1163. PubMed ID: 35282412
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Continuous evolution of base editors with expanded target compatibility and improved activity.
    Thuronyi BW; Koblan LW; Levy JM; Yeh WH; Zheng C; Newby GA; Wilson C; Bhaumik M; Shubina-Oleinik O; Holt JR; Liu DR
    Nat Biotechnol; 2019 Sep; 37(9):1070-1079. PubMed ID: 31332326
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diverse nucleotide substitutions in rice base editing mediated by novel TadA variants.
    Yu M; Kuang Y; Wang C; Wu X; Li S; Zhang D; Sun W; Zhou X; Ren B; Zhou H
    Plant Commun; 2024 May; ():100926. PubMed ID: 38725246
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Internally inlaid SaCas9 base editors enable window specific base editing.
    Jiang L; Long J; Yang Y; Zhou L; Su J; Qin F; Tang W; Tao R; Chen Q; Yao S
    Theranostics; 2022; 12(10):4767-4778. PubMed ID: 35832085
    [No Abstract]   [Full Text] [Related]  

  • 40. The "new favorite" of gene editing technology-single base editors.
    Wei Y; Zhang XH; Li DL
    Yi Chuan; 2017 Dec; 39(12):1115-1121. PubMed ID: 29258982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.