These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 37322620)

  • 1. The physiological role of thiol-based redox sensors in plant defense signaling.
    Chae HB; Bae SB; Paeng SK; Wi SD; Phan KAT; Kim MG; Kim WY; Yun DJ; Lee SY
    New Phytol; 2023 Aug; 239(4):1203-1211. PubMed ID: 37322620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulatory thiol oxidation in chloroplast metabolism, oxidative stress response and environmental signaling in plants.
    Vogelsang L; Dietz KJ
    Biochem J; 2020 May; 477(10):1865-1878. PubMed ID: 32463881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant Chloroplast Stress Response: Insights from Thiol Redox Proteomics.
    Yu J; Li Y; Qin Z; Guo S; Li Y; Miao Y; Song C; Chen S; Dai S
    Antioxid Redox Signal; 2020 Jul; 33(1):35-57. PubMed ID: 31989831
    [No Abstract]   [Full Text] [Related]  

  • 4. Plant thiol peroxidases as redox sensors and signal transducers in abiotic stress acclimation.
    Vogelsang L; Dietz KJ
    Free Radic Biol Med; 2022 Nov; 193(Pt 2):764-778. PubMed ID: 36403735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fluorescent protein sensor roGFP2-Orp1 monitors in vivo H
    Nietzel T; Elsässer M; Ruberti C; Steinbeck J; Ugalde JM; Fuchs P; Wagner S; Ostermann L; Moseler A; Lemke P; Fricker MD; Müller-Schüssele SJ; Moerschbacher BM; Costa A; Meyer AJ; Schwarzländer M
    New Phytol; 2019 Feb; 221(3):1649-1664. PubMed ID: 30347449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory mechanisms of thiol-based redox sensors: lessons learned from structural studies on prokaryotic redox sensors.
    Lee SJ; Kim DG; Lee KY; Koo JS; Lee BJ
    Arch Pharm Res; 2018 Jun; 41(6):583-593. PubMed ID: 29777359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of reactive oxygen species-sensitive thiol proteins by redox difference gel electrophoresis: implications for mitochondrial redox signaling.
    Hurd TR; Prime TA; Harbour ME; Lilley KS; Murphy MP
    J Biol Chem; 2007 Jul; 282(30):22040-51. PubMed ID: 17525152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cysteine thiol-based post-translational modification: What do we know about transcription factors?
    Zhou H; Huang J; Willems P; Van Breusegem F; Xie Y
    Trends Plant Sci; 2023 Apr; 28(4):415-428. PubMed ID: 36494303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein Thiol Redox Signaling in Monocytes and Macrophages.
    Short JD; Downs K; Tavakoli S; Asmis R
    Antioxid Redox Signal; 2016 Nov; 25(15):816-835. PubMed ID: 27288099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The redox regulation of thiol dependent signaling pathways in cancer.
    Giles GI
    Curr Pharm Des; 2006; 12(34):4427-43. PubMed ID: 17168752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiol-based redox proteomics in cancer research.
    Yuan K; Liu Y; Chen HN; Zhang L; Lan J; Gao W; Dou Q; Nice EC; Huang C
    Proteomics; 2015 Jan; 15(2-3):287-99. PubMed ID: 25251260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The emerging roles of protein glutathionylation in chloroplasts.
    Zaffagnini M; Bedhomme M; Lemaire SD; Trost P
    Plant Sci; 2012 Apr; 185-186():86-96. PubMed ID: 22325869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nutrient- and other stress-responsive microRNAs in plants: Role for thiol-based redox signaling.
    Panda SK; Sunkar R
    Plant Signal Behav; 2015; 10(4):e1010916. PubMed ID: 25912823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cysteine thiol sulfinic acid in plant stress signaling.
    Huang J; De Veirman L; Van Breusegem F
    Plant Cell Environ; 2024 Aug; 47(8):2766-2779. PubMed ID: 38251793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible cysteine oxidation in hydrogen peroxide sensing and signal transduction.
    García-Santamarina S; Boronat S; Hidalgo E
    Biochemistry; 2014 Apr; 53(16):2560-80. PubMed ID: 24738931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic Characterization of Reversible Thiol Oxidations in Proteomes and Proteins.
    Boronat S; Domènech A; Hidalgo E
    Antioxid Redox Signal; 2017 Mar; 26(7):329-344. PubMed ID: 27089838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox sensor QSOX1 regulates plant immunity by targeting GSNOR to modulate ROS generation.
    Chae HB; Kim MG; Kang CH; Park JH; Lee ES; Lee SU; Chi YH; Paeng SK; Bae SB; Wi SD; Yun BW; Kim WY; Yun DJ; Mackey D; Lee SY
    Mol Plant; 2021 Aug; 14(8):1312-1327. PubMed ID: 33962063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanotransducers in cellular redox signaling: modification of thiols by reactive oxygen and nitrogen species.
    Cooper CE; Patel RP; Brookes PS; Darley-Usmar VM
    Trends Biochem Sci; 2002 Oct; 27(10):489-92. PubMed ID: 12368076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers.
    Forman HJ; Fukuto JM; Torres M
    Am J Physiol Cell Physiol; 2004 Aug; 287(2):C246-56. PubMed ID: 15238356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of glutathione biosynthesis alters compartmental redox status and the thiol proteome in organogenesis-stage rat conceptuses.
    Harris C; Shuster DZ; Roman Gomez R; Sant KE; Reed MS; Pohl J; Hansen JM
    Free Radic Biol Med; 2013 Oct; 63():325-37. PubMed ID: 23736079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.