These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 37322817)
1. Modelling the climate change impact of mitigation (RCP 2.6) and high emission (RCP 8.5) scenarios on maize yield and possible adaptation measures in different agroclimatic zones of Punjab, India. Kothiyal S; Prabhjyot-Kaur ; Sandhu SS; Kaur J J Sci Food Agric; 2023 Nov; 103(14):6984-6994. PubMed ID: 37322817 [TBL] [Abstract][Full Text] [Related]
2. Climate change impact uncertainty assessment and adaptations for sustainable maize production using multi-crop and climate models. Yasin M; Ahmad A; Khaliq T; Habib-Ur-Rahman M; Niaz S; Gaiser T; Ghafoor I; Hassan HSU; Qasim M; Hoogenboom G Environ Sci Pollut Res Int; 2022 Mar; 29(13):18967-18988. PubMed ID: 34705205 [TBL] [Abstract][Full Text] [Related]
3. Assessing the impact of climate variability on maize using simulation modeling under semi-arid environment of Punjab, Pakistan. Ahmed I; Ur Rahman MH; Ahmed S; Hussain J; Ullah A; Judge J Environ Sci Pollut Res Int; 2018 Oct; 25(28):28413-28430. PubMed ID: 30083905 [TBL] [Abstract][Full Text] [Related]
4. Simulating adaptation strategies to offset potential impacts of climate variability and change on maize yields in Embu County, Kenya. Gummadi S; Kadiyala MDM; Rao KPC; Athanasiadis I; Mulwa R; Kilavi M; Legesse G; Amede T PLoS One; 2020; 15(11):e0241147. PubMed ID: 33151967 [TBL] [Abstract][Full Text] [Related]
5. Evaluating area-specific adaptation strategies for rainfed maize under future climates of India. Subba Rao AVM; Sarath Chandran MA; Bal SK; Pramod VP; Sandeep VM; Manikandan N; Raju BMK; Prabhakar M; Islam A; Naresh Kumar S; Singh VK Sci Total Environ; 2022 Aug; 836():155511. PubMed ID: 35490805 [TBL] [Abstract][Full Text] [Related]
6. Optimizing genotype-environment-management interactions for maize farmers to adapt to climate change in different agro-ecological zones across China. Zhang L; Zhang Z; Luo Y; Cao J; Li Z Sci Total Environ; 2020 Aug; 728():138614. PubMed ID: 32344223 [TBL] [Abstract][Full Text] [Related]
7. Negative effects of climate warming on maize yield are reversed by the changing of sowing date and cultivar selection in Northeast China. Liu Z; Hubbard KG; Lin X; Yang X Glob Chang Biol; 2013 Nov; 19(11):3481-92. PubMed ID: 23857749 [TBL] [Abstract][Full Text] [Related]
8. Simulating the effects of optimizing sowing date and variety shift on maize production at finer scale in northeast China under future climate. Zhang C; Gao J; Liu L; Wu S J Sci Food Agric; 2024 Apr; 104(6):3637-3647. PubMed ID: 38151478 [TBL] [Abstract][Full Text] [Related]
9. Exploring adaptation responses of maize to climate change scenarios in southern central Rift Valley of Ethiopia. Markos D; Worku W; Mamo G Sci Rep; 2023 Aug; 13(1):12949. PubMed ID: 37558728 [TBL] [Abstract][Full Text] [Related]
10. Assessing the use of a drought-tolerant variety as adaptation strategy for maize production under climate change in the savannas of Nigeria. Tofa AI; Kamara AY; Babaji BA; Akinseye FM; Bebeley JF Sci Rep; 2021 Apr; 11(1):8983. PubMed ID: 33903650 [TBL] [Abstract][Full Text] [Related]
11. Increased heat stress risk for maize in arid-based climates as affected by climate change: threats and solutions. Deihimfard R; Rahimi-Moghaddam S; Azizi K; Haghighat M Int J Biometeorol; 2022 Jul; 66(7):1365-1378. PubMed ID: 35462607 [TBL] [Abstract][Full Text] [Related]
12. Assessing climate change impacts on pearl millet under arid and semi-arid environments using CSM-CERES-Millet model. Ullah A; Ahmad I; Ahmad A; Khaliq T; Saeed U; M Habib-Ur-Rahman ; Hussain J; Ullah S; Hoogenboom G Environ Sci Pollut Res Int; 2019 Mar; 26(7):6745-6757. PubMed ID: 30632035 [TBL] [Abstract][Full Text] [Related]
13. Root proliferation adaptation strategy improved maize productivity in the US Great Plains: Insights from crop simulation model under future climate change. Onyekwelu I; Sharda V Sci Total Environ; 2024 Jun; 927():172205. PubMed ID: 38599397 [TBL] [Abstract][Full Text] [Related]
14. Vulnerability of maize production under future climate change: possible adaptation strategies. Bannayan M; Paymard P; Ashraf B J Sci Food Agric; 2016 Oct; 96(13):4465-74. PubMed ID: 26847375 [TBL] [Abstract][Full Text] [Related]
15. [Temporal and spatial variation of the optimal sowing dates of summer maize based on both statistical and processes models in Henan Province, China]. Tan MX; Wang J; Yu WD; He D; Wang N; Dai T; Sun Y; Tang JZ; Chang Q Ying Yong Sheng Tai Xue Bao; 2015 Dec; 26(12):3670-8. PubMed ID: 27112004 [TBL] [Abstract][Full Text] [Related]
16. Adaptability of wheat to future climate change: Effects of sowing date and sowing rate on wheat yield in three wheat production regions in the North China Plain. Wen P; Wei Q; Zheng L; Rui Z; Niu M; Gao C; Guan X; Wang T; Xiong S Sci Total Environ; 2023 Nov; 901():165906. PubMed ID: 37532040 [TBL] [Abstract][Full Text] [Related]
17. Climate change and maize yield in southern Africa: what can farm management do? Rurinda J; van Wijk MT; Mapfumo P; Descheemaeker K; Supit I; Giller KE Glob Chang Biol; 2015 Dec; 21(12):4588-601. PubMed ID: 26251975 [TBL] [Abstract][Full Text] [Related]
18. Modelling the impacts of climate change on faba bean ( Bogale GA; Maja MM; Gebreyohannes GH Heliyon; 2021 Oct; 7(10):e08176. PubMed ID: 34712857 [TBL] [Abstract][Full Text] [Related]
19. Management options for mid-century maize (Zea mays L.) in Ethiopia. Araya A; Prasad PVV; Gowda PH; Zambreski Z; Ciampitti IA Sci Total Environ; 2021 Mar; 758():143635. PubMed ID: 33248791 [TBL] [Abstract][Full Text] [Related]
20. Crop production on the Chinese Loess Plateau under 1.5 and 2.0 °C global warming scenarios. Wang D; Liang Y; Liu L; Huang J; Yin Z Sci Total Environ; 2023 Dec; 903():166158. PubMed ID: 37574052 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]