These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 37322916)
1. Simulations and fractional modeling of dengue transmission in Bangladesh. Akter S; Jin Z Math Biosci Eng; 2023 Mar; 20(6):9891-9922. PubMed ID: 37322916 [TBL] [Abstract][Full Text] [Related]
2. A new model of dengue fever in terms of fractional derivative. Fatmawati F; Jan R; Khan MA; Khan Y; Ullah S Math Biosci Eng; 2020 Aug; 17(5):5267-5287. PubMed ID: 33120552 [TBL] [Abstract][Full Text] [Related]
3. Mathematical Modelling of Dengue Transmission with Intervention Strategies Using Fractional Derivatives. Hamdan N'; Kilicman A Bull Math Biol; 2022 Oct; 84(12):138. PubMed ID: 36287255 [TBL] [Abstract][Full Text] [Related]
4. Fractional-calculus analysis of the transmission dynamics of the dengue infection. Srivastava HM; Jan R; Jan A; Deebani W; Shutaywi M Chaos; 2021 May; 31(5):053130. PubMed ID: 34240948 [TBL] [Abstract][Full Text] [Related]
5. Analysis of a non-integer order mathematical model for double strains of dengue and COVID-19 co-circulation using an efficient finite-difference method. Obiajulu EF; Omame A; Inyama SC; Diala UH; AlQahtani SA; Al-Rakhami MS; Alawwad AM; Alotaibi AA Sci Rep; 2023 Oct; 13(1):17787. PubMed ID: 37853028 [TBL] [Abstract][Full Text] [Related]
6. A fractional order model of the COVID-19 outbreak in Bangladesh. Akter S; Jin Z Math Biosci Eng; 2023 Jan; 20(2):2544-2565. PubMed ID: 36899546 [TBL] [Abstract][Full Text] [Related]
7. Analysis and Optimal Control of Fractional-Order Transmission of a Respiratory Epidemic Model. Yaro D; Apeanti WO; Akuamoah SW; Lu D Int J Appl Comput Math; 2019; 5(4):116. PubMed ID: 32289049 [TBL] [Abstract][Full Text] [Related]
8. To study the transmission dynamic of SARS-CoV-2 using nonlinear saturated incidence rate. Shah K; Abdeljawad T; Ud Din R Physica A; 2022 Oct; 604():127915. PubMed ID: 35874925 [TBL] [Abstract][Full Text] [Related]
9. A Fractional-Order Epidemic Model with Quarantine Class and Nonmonotonic Incidence: Modeling and Simulations. Rajak AK; Nilam Iran J Sci Technol Trans A Sci; 2022; 46(4):1249-1263. PubMed ID: 35967903 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of a dengue disease transmission model with two-stage structure in the human population. Li-Martín A; Reyes-Carreto R; Vargas-De-León C Math Biosci Eng; 2023 Jan; 20(1):955-974. PubMed ID: 36650797 [TBL] [Abstract][Full Text] [Related]
11. Mathematical analysis and prediction of future outbreak of dengue on time-varying contact rate using machine learning approach. Islam MS; Shahrear P; Saha G; Ataullha M; Rahman MS Comput Biol Med; 2024 Aug; 178():108707. PubMed ID: 38870726 [TBL] [Abstract][Full Text] [Related]
12. [Formula: see text] model for analyzing [Formula: see text]-19 pandemic process via [Formula: see text]-Caputo fractional derivative and numerical simulation. Mohammadaliee B; Roomi V; Samei ME Sci Rep; 2024 Jan; 14(1):723. PubMed ID: 38184696 [TBL] [Abstract][Full Text] [Related]
13. A fractional differential equation model for the COVID-19 transmission by using the Caputo-Fabrizio derivative. Baleanu D; Mohammadi H; Rezapour S Adv Differ Equ; 2020; 2020(1):299. PubMed ID: 32572336 [TBL] [Abstract][Full Text] [Related]
14. Mathematical analysis of a power-law form time dependent vector-borne disease transmission model. Sardar T; Saha B Math Biosci; 2017 Jun; 288():109-123. PubMed ID: 28274854 [TBL] [Abstract][Full Text] [Related]
15. Qualitative analysis of a fractional-order two-strain epidemic model with vaccination and general non-monotonic incidence rate. Sahnoune MY; Ez-Zetouni A; Akdim K; Zahid M Int J Dyn Control; 2022 Nov; ():1-12. PubMed ID: 36465981 [TBL] [Abstract][Full Text] [Related]
16. Analysis of fractional order model on higher institution students' anxiety towards mathematics with optimal control theory. Teklu SW Sci Rep; 2023 Apr; 13(1):6867. PubMed ID: 37106010 [TBL] [Abstract][Full Text] [Related]
17. Analysis of fractional COVID-19 epidemic model under Caputo operator. Zarin R; Khan A; Yusuf A; Abdel-Khalek S; Inc M Math Methods Appl Sci; 2021 Mar; ():. PubMed ID: 34230732 [TBL] [Abstract][Full Text] [Related]
18. Fractional Order Model for the Role of Mild Cases in the Transmission of COVID-19. Baba IA; Nasidi BA Chaos Solitons Fractals; 2021 Jan; 142():110374. PubMed ID: 33100604 [TBL] [Abstract][Full Text] [Related]
19. Effects of Nonmonotonic Functional Responses on a Disease Transmission Model: Modeling and Simulation. Kumar A; Nilam Commun Math Stat; 2022; 10(2):195-214. PubMed ID: 33680706 [TBL] [Abstract][Full Text] [Related]
20. The basic reproduction number obtained from Jacobian and next generation matrices - A case study of dengue transmission modelling. Yang HM Biosystems; 2014 Dec; 126():52-75. PubMed ID: 25305542 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]