These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 37322916)
41. Dynamics of fractional order COVID-19 model with a case study of Saudi Arabia. Chu YM; Ali A; Khan MA; Islam S; Ullah S Results Phys; 2021 Feb; 21():103787. PubMed ID: 33552881 [TBL] [Abstract][Full Text] [Related]
42. Implication of sexual transmission of Zika on dengue and Zika outbreaks. Tang B; Zhou WK; Xiao YN; Wu JH Math Biosci Eng; 2019 Jun; 16(5):5092-5113. PubMed ID: 31499705 [TBL] [Abstract][Full Text] [Related]
43. Dynamical behaviours and stability analysis of a generalized fractional model with a real case study. Baleanu D; Arshad S; Jajarmi A; Shokat W; Ghassabzade FA; Wali M J Adv Res; 2023 Jun; 48():157-173. PubMed ID: 36049735 [TBL] [Abstract][Full Text] [Related]
44. Mathematical analysis of a measles transmission dynamics model in Bangladesh with double dose vaccination. Kuddus MA; Mohiuddin M; Rahman A Sci Rep; 2021 Aug; 11(1):16571. PubMed ID: 34400667 [TBL] [Abstract][Full Text] [Related]
45. Modeling and simulation of the novel coronavirus in Caputo derivative. Awais M; Alshammari FS; Ullah S; Khan MA; Islam S Results Phys; 2020 Dec; 19():103588. PubMed ID: 33224721 [TBL] [Abstract][Full Text] [Related]
46. A dynamical study of a fuzzy epidemic model of Mosquito-Borne Disease. Dayan F; Rafiq M; Ahmed N; Raza A; Ahmad MO Comput Biol Med; 2022 Sep; 148():105673. PubMed ID: 35803748 [TBL] [Abstract][Full Text] [Related]
47. Stability Analysis of a Fractional-Order African Swine Fever Model with Saturation Incidence. Shi R; Zhang Y Animals (Basel); 2024 Jun; 14(13):. PubMed ID: 38998040 [TBL] [Abstract][Full Text] [Related]
48. Stability analysis and optimal control of Covid-19 pandemic SEIQR fractional mathematical model with harmonic mean type incidence rate and treatment. Sinan M; Ali A; Shah K; Assiri TA; Nofal TA Results Phys; 2021 Mar; 22():103873. PubMed ID: 33552882 [TBL] [Abstract][Full Text] [Related]
49. Asymptotic analysis of endemic equilibrium to a brucellosis model. Li MT; Pei X; Zhang J; Li L Math Biosci Eng; 2019 Jun; 16(5):5836-5850. PubMed ID: 31499740 [TBL] [Abstract][Full Text] [Related]
50. Modeling Impact of Temperature and Human Movement on the Persistence of Dengue Disease. Phaijoo GR; Gurung DB Comput Math Methods Med; 2017; 2017():1747134. PubMed ID: 29312458 [TBL] [Abstract][Full Text] [Related]
51. Mathematical assessment of the dynamics of novel coronavirus infection with treatment: A fractional study. Liu X; Ullah S; Alshehri A; Altanji M Chaos Solitons Fractals; 2021 Dec; 153():111534. PubMed ID: 34751202 [TBL] [Abstract][Full Text] [Related]
52. Analysis of SIQR type mathematical model under Atangana-Baleanu fractional differential operator. Liu X; Arfan M; Ur Rahman M; Fatima B Comput Methods Biomech Biomed Engin; 2023 Jan; 26(1):98-112. PubMed ID: 35271386 [TBL] [Abstract][Full Text] [Related]
53. Modeling the impact of public health education on tungiasis dynamics with saturated treatment: Insight through the Caputo fractional derivative. Simelane SM; Dlamini PG; Osaye FJ; Obaido G; Ogbukiri B; Aruleba K; Jones CM; Chukwu CW; Egbelowo OF Math Biosci Eng; 2023 Feb; 20(5):7696-7720. PubMed ID: 37161168 [TBL] [Abstract][Full Text] [Related]
54. A fractional modeling approach for the transmission dynamics of measles with double-dose vaccination. Farhan M; Shah Z; Jan R; Islam S; Alshehri MH; Ling Z Comput Methods Biomech Biomed Engin; 2023 Dec; ():1-18. PubMed ID: 38149815 [TBL] [Abstract][Full Text] [Related]
55. Modeling and analysis of monkeypox disease using fractional derivatives. Okyere S; Ackora-Prah J Results Eng; 2023 Mar; 17():100786. PubMed ID: 36467285 [TBL] [Abstract][Full Text] [Related]
56. Modelling the impact of vaccination and environmental transmission on the dynamics of monkeypox virus under Caputo operator. Addai E; Ngungu M; Omoloye MA; Marinda E Math Biosci Eng; 2023 Mar; 20(6):10174-10199. PubMed ID: 37322928 [TBL] [Abstract][Full Text] [Related]
57. Qualitative and quantitative analysis of the COVID-19 pandemic by a two-side fractional-order compartmental model. Ma W; Zhao Y; Guo L; Chen Y ISA Trans; 2022 May; 124():144-156. PubMed ID: 35086673 [TBL] [Abstract][Full Text] [Related]
58. Backward bifurcations in dengue transmission dynamics. Garba SM; Gumel AB; Abu Bakar MR Math Biosci; 2008 Sep; 215(1):11-25. PubMed ID: 18573507 [TBL] [Abstract][Full Text] [Related]
59. Global investigation for an "SIS" model for COVID-19 epidemic with asymptomatic infection. Alharbi MH Math Biosci Eng; 2023 Jan; 20(3):5298-5315. PubMed ID: 36896546 [TBL] [Abstract][Full Text] [Related]
60. A network model for control of dengue epidemic using sterile insect technique. Mishra A; Ambrosio B; Gakkhar S; Aziz-Alaoui MA Math Biosci Eng; 2018 Apr; 15(2):441-460. PubMed ID: 29161844 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]