These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37322927)

  • 1. GL-FusionNet: Fusing global and local features to classify deep and superficial partial thickness burn.
    Li Z; Huang J; Tong X; Zhang C; Lu J; Zhang W; Song A; Ji S
    Math Biosci Eng; 2023 Mar; 20(6):10153-10173. PubMed ID: 37322927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Establishment and test results of an artificial intelligence burn depth recognition model based on convolutional neural network].
    He ZY; Wang Y; Zhang PH; Zuo K; Liang PF; Zeng JZ; Zhou ST; Guo L; Huang MT; Cui X
    Zhonghua Shao Shang Za Zhi; 2020 Nov; 36(11):1070-1074. PubMed ID: 33238691
    [No Abstract]   [Full Text] [Related]  

  • 3. Burn image segmentation based on Mask Regions with Convolutional Neural Network deep learning framework: more accurate and more convenient.
    Jiao C; Su K; Xie W; Ye Z
    Burns Trauma; 2019; 7():6. PubMed ID: 30859107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving burn depth assessment for pediatric scalds by AI based on semantic segmentation of polarized light photography images.
    Cirillo MD; Mirdell R; Sjöberg F; Pham TD
    Burns; 2021 Nov; 47(7):1586-1593. PubMed ID: 33947595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BPBSAM: Body part-specific burn severity assessment model.
    Chauhan J; Goyal P
    Burns; 2020 Sep; 46(6):1407-1423. PubMed ID: 32376068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Framework for Automatic Burn Image Segmentation and Burn Depth Diagnosis Using Deep Learning.
    Liu H; Yue K; Cheng S; Li W; Fu Z
    Comput Math Methods Med; 2021; 2021():5514224. PubMed ID: 33880130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of burn injuries using near-infrared spectroscopy.
    Sowa MG; Leonardi L; Payette JR; Cross KM; Gomez M; Fish JS
    J Biomed Opt; 2006; 11(5):054002. PubMed ID: 17092151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute discrimination between superficial-partial and deep-partial thickness burns in a preclinical model with laser speckle imaging.
    Crouzet C; Nguyen JQ; Ponticorvo A; Bernal NP; Durkin AJ; Choi B
    Burns; 2015 Aug; 41(5):1058-63. PubMed ID: 25814299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiation of superficial-partial vs. deep-partial thickness burn injuries in vivo by confocal-laser-scanning microscopy.
    Altintas MA; Altintas AA; Knobloch K; Guggenheim M; Zweifel CJ; Vogt PM
    Burns; 2009 Feb; 35(1):80-6. PubMed ID: 18691820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaporative Water Loss in Superficial to Full Thickness Burns.
    Busche MN; Roettger A; Herold C; Vogt PM; Rennekampff HO
    Ann Plast Surg; 2016 Oct; 77(4):401-5. PubMed ID: 27387468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Clinical characteristics and treatment of diabetic patients with superficial partial-thickness burn on feet].
    Ling XW; Zhang TT; Dai WT; Xia WD; Lin C
    Zhonghua Shao Shang Za Zhi; 2019 Jan; 35(1):25-30. PubMed ID: 30678398
    [No Abstract]   [Full Text] [Related]  

  • 12. Application of multiple deep learning models for automatic burn wound assessment.
    Chang CW; Ho CY; Lai F; Christian M; Huang SC; Chang DH; Chen YS
    Burns; 2023 Aug; 49(5):1039-1051. PubMed ID: 35945064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Learning-Assisted Burn Wound Diagnosis: Diagnostic Model Development Study.
    Chang CW; Lai F; Christian M; Chen YC; Hsu C; Chen YS; Chang DH; Roan TL; Yu YC
    JMIR Med Inform; 2021 Dec; 9(12):e22798. PubMed ID: 34860674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Clinical study and pathological examination on the treatment of deep partial thickness burn wound with negative charge aerosol].
    Li TZ; Xu YB; Hu XG; Shen R; Peng XD; Wu WJ; Luo L; Dai XM; Zou YT; Qi SH; Wu LP; Xie JL; Deng XX; Chen E; Zhang HZ
    Zhonghua Shao Shang Za Zhi; 2005 Aug; 21(4):266-9. PubMed ID: 16185409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steel Wool-Aided Dermabrasion of Deep Partial-Thickness Burns.
    Yontar Y; Coruh A; Dinc N; Kontas O
    J Burn Care Res; 2017; 38(3):179-186. PubMed ID: 27755249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skin flap survival after superficial and deep partial-thickness burn injury.
    Borman H; Maral T; Demirhan B; Haberal M
    Ann Plast Surg; 1999 Nov; 43(5):513-8. PubMed ID: 10560867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segmentation and classification of burn images by color and texture information.
    Acha B; Serrano C; Acha JI; Roa LM
    J Biomed Opt; 2005; 10(3):034014. PubMed ID: 16229658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of EpiProtect® microbial cellulose burns dressings in young children.
    Shanks LA; Cronshaw A; Alexander KS; Davies JA; O'Boyle CP
    Scars Burn Heal; 2020; 6():2059513120940503. PubMed ID: 32850135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Laser Doppler Imaging (LDI) and clinical assessment in differentiating between superficial and deep partial thickness burn wounds.
    Jan SN; Khan FA; Bashir MM; Nasir M; Ansari HH; Shami HB; Nazir U; Hanif A; Sohail M
    Burns; 2018 Mar; 44(2):405-413. PubMed ID: 28918904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Meta-analysis on the diagnostic value of laser Doppler imaging for burn depth].
    Huang Y; Qiu L; Mei AL; Li JX
    Zhonghua Shao Shang Za Zhi; 2017 May; 33(5):301-308. PubMed ID: 28651422
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.