BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37322984)

  • 1. A comparative study on daily evapotranspiration estimation by using various artificial intelligence techniques and traditional regression calculations.
    Güzel H; Üneş F; Erginer M; Kaya YZ; Taşar B; Erginer İ; Demirci M
    Math Biosci Eng; 2023 Apr; 20(6):11328-11352. PubMed ID: 37322984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial intelligence models versus empirical equations for modeling monthly reference evapotranspiration.
    Tikhamarine Y; Malik A; Souag-Gamane D; Kisi O
    Environ Sci Pollut Res Int; 2020 Aug; 27(24):30001-30019. PubMed ID: 32445152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) for modeling of Cu (II) adsorption from aqueous solution using biochar derived from rambutan (Nephelium lappaceum) peel.
    Wong YJ; Arumugasamy SK; Chung CH; Selvarajoo A; Sethu V
    Environ Monit Assess; 2020 Jun; 192(7):439. PubMed ID: 32556670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reference evapotranspiration estimate with missing climatic data and multiple linear regression models.
    Koç DL; Erkan Can M
    PeerJ; 2023; 11():e15252. PubMed ID: 37131990
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Banerjee G; Sarkar U; Sarkar S; Ghosh I
    PeerJ; 2024; 12():e17437. PubMed ID: 38832031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolving connectionist systems (ECoSs): a new approach for modeling daily reference evapotranspiration (ET
    Heddam S; Watts MJ; Houichi L; Djemili L; Sebbar A
    Environ Monit Assess; 2018 Aug; 190(9):516. PubMed ID: 30109518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving one-dimensional pollution dispersion modeling in rivers using ANFIS and ANN-based GA optimized models.
    Seifi A; Riahi-Madvar H
    Environ Sci Pollut Res Int; 2019 Jan; 26(1):867-885. PubMed ID: 30415370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting coagulation-flocculation process for turbidity removal from water using graphene oxide: a comparative study on ANN, SVR, ANFIS, and RSM models.
    Ghasemi M; Hasani Zonoozi M; Rezania N; Saadatpour M
    Environ Sci Pollut Res Int; 2022 Oct; 29(48):72839-72852. PubMed ID: 35616836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Estimation of evapotranspiration and crop coefficient in Dajiuhu peatland of Shennongjia based on FAO56 Penman-Monteith].
    Hu C; Ge JW; Xu XN; Tan YS; Yuan CH
    Ying Yong Sheng Tai Xue Bao; 2020 May; 31(5):1699-1706. PubMed ID: 32530249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model.
    Ge J; Zhao L; Yu Z; Liu H; Zhang L; Gong X; Sun H
    Plants (Basel); 2022 Jul; 11(15):. PubMed ID: 35893626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative assessment of deep belief network and hybrid adaptive neuro-fuzzy inference system model based on a meta-heuristic optimization algorithm for precise predictions of the potential evapotranspiration.
    Akiner ME; Ghasri M
    Environ Sci Pollut Res Int; 2024 Jun; 31(30):42719-42749. PubMed ID: 38879646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: a case study in United States.
    Olyaie E; Banejad H; Chau KW; Melesse AM
    Environ Monit Assess; 2015 Apr; 187(4):189. PubMed ID: 25787167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved model based on the support vector machine and cuckoo algorithm for simulating reference evapotranspiration.
    Ehteram M; Singh VP; Ferdowsi A; Mousavi SF; Farzin S; Karami H; Mohd NS; Afan HA; Lai SH; Kisi O; Malek MA; Ahmed AN; El-Shafie A
    PLoS One; 2019; 14(5):e0217499. PubMed ID: 31150443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing three types of data-driven models for monthly evapotranspiration prediction under heterogeneous climatic conditions.
    Aghelpour P; Varshavian V; Khodamorad Pour M; Hamedi Z
    Sci Rep; 2022 Oct; 12(1):17363. PubMed ID: 36253432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP.
    Jalal FE; Xu Y; Iqbal M; Javed MF; Jamhiri B
    J Environ Manage; 2021 Jul; 289():112420. PubMed ID: 33831756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced machine learning-based kharif maize evapotranspiration estimation in semi-arid climate.
    Jatav MS; Sarangi A; Singh DK; Sahoo RN; Varghese C
    Water Sci Technol; 2023 Aug; 88(4):991-1014. PubMed ID: 37651334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of artificial intelligence models for prediction of groundwater level fluctuations: case study (Tehran-Karaj alluvial aquifer).
    Vadiati M; Rajabi Yami Z; Eskandari E; Nakhaei M; Kisi O
    Environ Monit Assess; 2022 Jul; 194(9):619. PubMed ID: 35904687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of multilayer perceptron neural networks and adaptive neuro-fuzzy inference systems for the mass transfer modeling of Echium amoenum Fisch. & C. A. Mey.
    Chasiotis V; Nadi F; Filios A
    J Sci Food Agric; 2021 Dec; 101(15):6514-6524. PubMed ID: 34000064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling monthly mean air temperature using artificial neural network, adaptive neuro-fuzzy inference system and support vector regression methods: A case of study for Turkey.
    Yakut E; Süzülmüş S
    Network; 2020; 31(1-4):1-36. PubMed ID: 32397767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance evaluation of artificial intelligence paradigms-artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction.
    Tabbussum R; Dar AQ
    Environ Sci Pollut Res Int; 2021 May; 28(20):25265-25282. PubMed ID: 33453033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.