BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 37323123)

  • 1. Random matrix theory tools for the predictive analysis of functional magnetic resonance imaging examinations.
    Berger D; Matharoo GS; Levman J
    J Med Imaging (Bellingham); 2023 May; 10(3):036003. PubMed ID: 37323123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers.
    Deist TM; Dankers FJWM; Valdes G; Wijsman R; Hsu IC; Oberije C; Lustberg T; van Soest J; Hoebers F; Jochems A; El Naqa I; Wee L; Morin O; Raleigh DR; Bots W; Kaanders JH; Belderbos J; Kwint M; Solberg T; Monshouwer R; Bussink J; Dekker A; Lambin P
    Med Phys; 2018 Jul; 45(7):3449-3459. PubMed ID: 29763967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of sureness in evaluating AI/CADx: Lesion-based repeatability of machine learning classification performance on breast MRI.
    Whitney HM; Drukker K; Vieceli M; Van Dusen A; de Oliveira M; Abe H; Giger ML
    Med Phys; 2024 Mar; 51(3):1812-1821. PubMed ID: 37602841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning Evidence for Sex Differences Consistently Influences Resting-State Functional Magnetic Resonance Imaging Fluctuations Across Multiple Independently Acquired Data Sets.
    Al Zoubi O; Misaki M; Tsuchiyagaito A; Zotev V; White E; Paulus M; Bodurka J
    Brain Connect; 2022 May; 12(4):348-361. PubMed ID: 34269609
    [No Abstract]   [Full Text] [Related]  

  • 5. Using machine learning to predict outcomes following open abdominal aortic aneurysm repair.
    Li B; Aljabri B; Verma R; Beaton D; Eisenberg N; Lee DS; Wijeysundera DN; Forbes TL; Rotstein OD; de Mestral C; Mamdani M; Roche-Nagle G; Al-Omran M
    J Vasc Surg; 2023 Dec; 78(6):1426-1438.e6. PubMed ID: 37634621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification.
    Lee HS; Hong H; Jung DC; Park S; Kim J
    Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of random matrix theory in the discovery of resting state brain networks.
    Bansal R; Peterson BS
    Magn Reson Imaging; 2021 Apr; 77():69-87. PubMed ID: 33326838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel learning framework (knockoff technique) to evaluate metric ranking algorithms to describe human response to injury.
    Banerjee A; DeVogel N; Pintar FA; Yoganandan N
    Traffic Inj Prev; 2018; 19(sup2):S121-S126. PubMed ID: 30570337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Class imbalance should not throw you off balance: Choosing the right classifiers and performance metrics for brain decoding with imbalanced data.
    Thölke P; Mantilla-Ramos YJ; Abdelhedi H; Maschke C; Dehgan A; Harel Y; Kemtur A; Mekki Berrada L; Sahraoui M; Young T; Bellemare Pépin A; El Khantour C; Landry M; Pascarella A; Hadid V; Combrisson E; O'Byrne J; Jerbi K
    Neuroimage; 2023 Aug; 277():120253. PubMed ID: 37385392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of Rajayoga Meditators Based on the Duration of Practice Using Graph Theoretical Measures of Functional Connectivity from Task-Based Functional Magnetic Resonance Imaging.
    Savanth AS; Vijaya PA; Nair AK; Kutty BM
    Int J Yoga; 2022; 15(2):96-105. PubMed ID: 36329777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Random Matrix Analysis of Ca
    Korošak D; Slak Rupnik M
    Front Physiol; 2019; 10():1194. PubMed ID: 31620017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Machine Learning-Based Analytic Pipeline Applied to Clinical and Serum IgG Immunoproteome Data To Predict Chlamydia trachomatis Genital Tract Ascension and Incident Infection in Women.
    Liu C; Mokashi NV; Darville T; Sun X; O'Connell CM; Hufnagel K; Waterboer T; Zheng X
    Microbiol Spectr; 2023 Aug; 11(4):e0468922. PubMed ID: 37318345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance comparison of 10 different classification techniques in segmenting white matter hyperintensities in aging.
    Dadar M; Maranzano J; Misquitta K; Anor CJ; Fonov VS; Tartaglia MC; Carmichael OT; Decarli C; Collins DL;
    Neuroimage; 2017 Aug; 157():233-249. PubMed ID: 28602597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Machine Learning With Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients.
    Tahmassebi A; Wengert GJ; Helbich TH; Bago-Horvath Z; Alaei S; Bartsch R; Dubsky P; Baltzer P; Clauser P; Kapetas P; Morris EA; Meyer-Baese A; Pinker K
    Invest Radiol; 2019 Feb; 54(2):110-117. PubMed ID: 30358693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autoencoder and restricted Boltzmann machine for transfer learning in functional magnetic resonance imaging task classification.
    Hwang J; Lustig N; Jung M; Lee JH
    Heliyon; 2023 Jul; 9(7):e18086. PubMed ID: 37519689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of machine learning method on automatic classification of motor subtype of Parkinson's disease based on multilevel indices of rs-fMRI.
    Pang H; Yu Z; Yu H; Cao J; Li Y; Guo M; Cao C; Fan G
    Parkinsonism Relat Disord; 2021 Sep; 90():65-72. PubMed ID: 34399160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recurrent neural network models (CovRNN) for predicting outcomes of patients with COVID-19 on admission to hospital: model development and validation using electronic health record data.
    Rasmy L; Nigo M; Kannadath BS; Xie Z; Mao B; Patel K; Zhou Y; Zhang W; Ross A; Xu H; Zhi D
    Lancet Digit Health; 2022 Jun; 4(6):e415-e425. PubMed ID: 35466079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Functional Connectivity Change-Point Detection With Random Matrix Theory Inference.
    Kim J; Jeong W; Chung CK
    Front Neurosci; 2021; 15():565029. PubMed ID: 34017233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing the prediction of IDC breast cancer staging from gene expression profiles using hybrid feature selection methods and deep learning architecture.
    Kishore A; Venkataramana L; Prasad DVV; Mohan A; Jha B
    Med Biol Eng Comput; 2023 Nov; 61(11):2895-2919. PubMed ID: 37530887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.