These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37323160)

  • 1. Virtual screening of organic quinones as cathode materials for sodium-ion batteries.
    Zhou X; Janssen RAJ; Er S
    Energy Adv; 2023 Jun; 2(6):820-828. PubMed ID: 37323160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RedDB, a computational database of electroactive molecules for aqueous redox flow batteries.
    Sorkun E; Zhang Q; Khetan A; Sorkun MC; Er S
    Sci Data; 2022 Nov; 9(1):718. PubMed ID: 36443329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries.
    Song Z; Qian Y; Zhang T; Otani M; Zhou H
    Adv Sci (Weinh); 2015 Sep; 2(9):1500124. PubMed ID: 27980977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Naphthoquinone-Based Composite Cathodes for Aqueous Rechargeable Zinc-Ion Batteries.
    Kumankuma-Sarpong J; Tang S; Guo W; Fu Y
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4084-4092. PubMed ID: 33459008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Efficient, Cost Effective, and Safe Sodiation Agent for High-Performance Sodium-Ion Batteries.
    Shanmukaraj D; Kretschmer K; Sahu T; Bao W; Rojo T; Wang G; Armand M
    ChemSusChem; 2018 Sep; 11(18):3286-3291. PubMed ID: 29968282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab Initio Study of Sodium Insertion in the λ-Mn
    Vasileiadis A; Carlsen B; de Klerk NJJ; Wagemaker M
    Chem Mater; 2018 Oct; 30(19):6646-6659. PubMed ID: 30344371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are Redox-Active Organic Small Molecules Applicable for High-Voltage (>4 V) Lithium-Ion Battery Cathodes?
    Katsuyama Y; Kobayashi H; Iwase K; Gambe Y; Honma I
    Adv Sci (Weinh); 2022 Apr; 9(12):e2200187. PubMed ID: 35266645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Volumetric Energy Density Sulfur Cathode with Heavy and Catalytic Metal Oxide Host for Lithium-Sulfur Battery.
    Liu YT; Liu S; Li GR; Yan TY; Gao XP
    Adv Sci (Weinh); 2020 Jun; 7(12):1903693. PubMed ID: 32596113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries.
    Wang DY; Guo W; Fu Y
    Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quinone Based Materials as Renewable High Energy Density Cathode Materials for Rechargeable Magnesium Batteries.
    Bitenc J; Pavčnik T; Košir U; Pirnat K
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31973193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved Sodiation Additive and Its Nuances in the Performance Enhancement of Sodium-Ion Batteries.
    Fernández-Ropero AJ; Zarrabeitia M; Baraldi G; Echeverria M; Rojo T; Armand M; Shanmukaraj D
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):11814-11821. PubMed ID: 33650844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Energy Density Li-O
    Lee H; Lee DJ; Kim M; Kim H; Cho YS; Kwon HJ; Lee HC; Park CR; Im D
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17385-17395. PubMed ID: 32212667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research Progress toward Room Temperature Sodium Sulfur Batteries: A Review.
    Wang Y; Zhang Y; Cheng H; Ni Z; Wang Y; Xia G; Li X; Zeng X
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33799697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging Lithiated Organic Cathode Materials for Lithium-Ion Full Batteries.
    Lu Y; Zhang Q; Li F; Chen J
    Angew Chem Int Ed Engl; 2023 Feb; 62(7):e202216047. PubMed ID: 36445787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational design of molecules for an all-quinone redox flow battery.
    Er S; Suh C; Marshak MP; Aspuru-Guzik A
    Chem Sci; 2015 Feb; 6(2):885-893. PubMed ID: 29560173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High Discharge Capacity and Ultra-Fast-Charging Sodium Dual-Ion Battery Based on Insoluble Organic Polymer Anode and Concentrated Electrolyte.
    Wu H; Ye Z; Zhu J; Luo S; Li L; Yuan W
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36300925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Review on the Construction of Carbon-Based Metal Compound Composite Cathode Materials for Room Temperature Sodium-Sulfur Batteries.
    Wang X; Guo D; Yang L; Jin M; Chen X; Wang S
    Front Chem; 2022; 10():928429. PubMed ID: 35755245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eutectic Synthesis of the P2-Type Na
    Li M; Wood DL; Bai Y; Essehli R; Amin MR; Jafta C; Muralidharan N; Li J; Belharouak I
    ACS Appl Mater Interfaces; 2020 May; 12(21):23951-23958. PubMed ID: 32368897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ, Atomic-Resolution Observation of Lithiation and Sodiation of WS
    Xu Y; Wang K; Yao Z; Kang J; Lam D; Yang D; Ai W; Wolverton C; Hersam MC; Huang Y; Huang W; Dravid VP; Wu J
    Small; 2021 Jun; 17(24):e2100637. PubMed ID: 33982862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.