These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37323446)

  • 1. Preparation of quasi-core/shell structured composite energetic materials to improve combustion performance.
    Wang R; Yang L; Zhang Z; Song W; Wang D; Guo C
    RSC Adv; 2023 Jun; 13(26):17834-17841. PubMed ID: 37323446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of RDX/F2311/Fe
    Zhang Z; Jiang D; Yang L; Song W; Wang R; Huang Q
    Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of Core-Shell-Structured RDX@PVDF Microspheres with Improved Thermal Stability and Decreased Mechanical Sensitivity.
    Wu H; Jiang A; Li M; Wang Y; Zhao F; Li Y
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Core-Shell Structured Nanoenergetic Materials: Preparation and Fundamental Properties.
    Ma X; Li Y; Hussain I; Shen R; Yang G; Zhang K
    Adv Mater; 2020 Jul; 32(30):e2001291. PubMed ID: 32557860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of Bi
    Xia M; Yao Q; Yang H; Guo T; Du X; Zhang Y; Li G; Luo Y
    Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31212659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Bi
    Wang J; Lian X; Chen S; Li H; Xu K
    J Colloid Interface Sci; 2022 Mar; 610():842-853. PubMed ID: 34863542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core@Double-Shell Structured Energetic Composites with Reduced Sensitivity and Enhanced Mechanical Properties.
    Lin C; Huang B; Gong F; Yang Z; Liu J; Zhang J; Zeng C; Li Y; Li J; Guo S
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30341-30351. PubMed ID: 31356045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-substitute nitrochitosan used as energetic materials: Preparation and detonation properties.
    Li C; Li H; Xu K
    Carbohydr Polym; 2020 Jun; 237():116176. PubMed ID: 32241397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precise Regulation of Combustion Characteristics of High-Energy Composite Propellants by Incorporation of CL-20 Crystals Intercalated with Energetic Burn Rate Modifiers.
    Nie H; Wang Z; Zhang XX; Yang SL; Ren Z; Yan QL
    Langmuir; 2023 Sep; 39(36):12599-12609. PubMed ID: 37643352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Art of Framework Construction: Core-Shell Structured Micro-Energetic Materials.
    Duan B; Li J; Mo H; Lu X; Xu M; Wang B; Liu N
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34577119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Al-Based Nano-Sized Composite Energetic Materials (Nano-CEMs): Preparation, Characterization, and Performance.
    Pang W; Fan X; Wang K; Chao Y; Xu H; Qin Z; Zhao F
    Nanomaterials (Basel); 2020 May; 10(6):. PubMed ID: 32485843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of a superfine RDX/Al composite as an energetic material by mechanical ball-milling method and the study of its thermal properties.
    Xiao L; Zhang Y; Wang X; Hao G; Liu J; Ke X; Chen T; Jiang W
    RSC Adv; 2018 Nov; 8(66):38047-38055. PubMed ID: 35558610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of fluoropolymer content on thermal and combustion performance of direct writing high-solid nanothermite composite.
    Jiao Y; Li S; Li G; Luo Y
    RSC Adv; 2022 Feb; 12(9):5612-5618. PubMed ID: 35425591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Propagation of combustion waves in the shell-core energetic materials with external heat losses.
    Gubernov VV; Kudryumov VN; Kolobov AV; Polezhaev AA
    Proc Math Phys Eng Sci; 2017 Mar; 473(2199):20160937. PubMed ID: 28413356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pb Single Atoms Enable Unprecedented Catalytic Behavior for the Combustion of Energetic Materials.
    Qu W; Niu S; Sun D; Gao H; Wu Y; Yuan Z; Chen X; Wang Y; An T; Wang G; Zhao F
    Adv Sci (Weinh); 2021 Mar; 8(5):2002889. PubMed ID: 33717844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired Fabrication of an Insensitive Ammonium Perchlorate Core-Shell Composite with Polydopamine Coating.
    Huang Y; Tian X; Wang J; Zhong K; Chen Y; Li C; Jia P
    Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38674989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of Al@FTCS/P(VDF-HFP) Composite Energetic Materials and Their Reaction Properties.
    Ke X; Deng L; Wang Y; Tang K; Xiao L; Hao G; Li P; Zhou X
    Materials (Basel); 2024 Jun; 17(13):. PubMed ID: 38998129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shock-Induced Energy Release Performances of PTFE/Al/Oxide.
    Yuan Y; Shi D; He S; Guo H; Zheng Y; Zhang Y; Wang H
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Energy Composite Fuels with Improved Combustion Efficiency by Using AlH
    Yu MH; Xu R; Xie WX; Li YJ; Nie HQ; Yan QL
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49611-49622. PubMed ID: 37830898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and Reactivity of Core-Shell Al@CL-20 Composites Embedded with Graphene-Based Complexes as Catalysts.
    Feng Z; Yu M; Xu R; Pu R; Nie H; Yan QL
    Langmuir; 2024 May; 40(19):10228-10239. PubMed ID: 38693709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.