These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37323580)

  • 1. Rapid, scalable, combinatorial genome engineering by marker-less enrichment and recombination of genetically engineered loci in yeast.
    Abdullah M; Greco BM; Laurent JM; Garge RK; Boutz DR; Vandeloo M; Marcotte EM; Kachroo AH
    Cell Rep Methods; 2023 May; 3(5):100464. PubMed ID: 37323580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CReasPy-Cloning: A Method for Simultaneous Cloning and Engineering of Megabase-Sized Genomes in Yeast Using the CRISPR-Cas9 System.
    Ruiz E; Talenton V; Dubrana MP; Guesdon G; Lluch-Senar M; Salin F; Sirand-Pugnet P; Arfi Y; Lartigue C
    ACS Synth Biol; 2019 Nov; 8(11):2547-2557. PubMed ID: 31663334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding the CRISPR/Cas9 Toolbox for Gene Engineering in S. cerevisiae.
    Levi O; Arava Y
    Curr Microbiol; 2020 Mar; 77(3):468-478. PubMed ID: 31901956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual auxotrophy coupled red labeling strategy for efficient genome editing in Saccharomyces cerevisiae.
    Li J; Wu T; Wang J; Chen Y; Zhang W; Cai L; Lai S; Hu K; Jin W
    Fungal Genet Biol; 2024 Aug; 173():103910. PubMed ID: 38897560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-PCS: a powerful new approach to inducing multiple chromosome splitting in Saccharomyces cerevisiae.
    Sasano Y; Nagasawa K; Kaboli S; Sugiyama M; Harashima S
    Sci Rep; 2016 Aug; 6():30278. PubMed ID: 27530680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Efficient and Marker-free Genome Editing of Human Pluripotent Stem Cells by CRISPR-Cas9 RNP and AAV6 Donor-Mediated Homologous Recombination.
    Martin RM; Ikeda K; Cromer MK; Uchida N; Nishimura T; Romano R; Tong AJ; Lemgart VT; Camarena J; Pavel-Dinu M; Sindhu C; Wiebking V; Vaidyanathan S; Dever DP; Bak RO; Laustsen A; Lesch BJ; Jakobsen MR; Sebastiano V; Nakauchi H; Porteus MH
    Cell Stem Cell; 2019 May; 24(5):821-828.e5. PubMed ID: 31051134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Easy efficient HDR-based targeted knock-in in
    Singh R; Chandel S; Ghosh A; Gautam A; Huson DH; Ravichandiran V; Ghosh D
    Bioengineered; 2022 Jun; 13(6):14857-14871. PubMed ID: 36602175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9-mediated efficient genome editing via protoplast-based transformation in yeast-like fungus Aureobasidium pullulans.
    Zhang Y; Feng J; Wang P; Xia J; Li X; Zou X
    Gene; 2019 Aug; 709():8-16. PubMed ID: 31132514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient SSA-mediated precise genome editing using CRISPR/Cas9.
    Li X; Bai Y; Cheng X; Kalds PGT; Sun B; Wu Y; Lv H; Xu K; Zhang Z
    FEBS J; 2018 Sep; 285(18):3362-3375. PubMed ID: 30085411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The yeast platform engineered for synthetic gRNA-landing pads enables multiple gene integrations by a single gRNA/Cas9 system.
    Baek S; Utomo JC; Lee JY; Dalal K; Yoon YJ; Ro DK
    Metab Eng; 2021 Mar; 64():111-121. PubMed ID: 33549837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Cas9 mediated gene deletions in lager yeast Saccharomyces pastorianus.
    Gorter de Vries AR; de Groot PA; van den Broek M; Daran JG
    Microb Cell Fact; 2017 Dec; 16(1):222. PubMed ID: 29207996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new inducible CRISPR-Cas9 system useful for genome editing and study of double-strand break repair in Candida glabrata.
    Maroc L; Fairhead C
    Yeast; 2019 Dec; 36(12):723-731. PubMed ID: 31423617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple CRISPR-Cas9 Genome Editing in Saccharomyces cerevisiae.
    Laughery MF; Wyrick JJ
    Curr Protoc Mol Biol; 2019 Dec; 129(1):e110. PubMed ID: 31763795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast genetic interaction screens in the age of CRISPR/Cas.
    Adames NR; Gallegos JE; Peccoud J
    Curr Genet; 2019 Apr; 65(2):307-327. PubMed ID: 30255296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae.
    Jakočiūnas T; Bonde I; Herrgård M; Harrison SJ; Kristensen M; Pedersen LE; Jensen MK; Keasling JD
    Metab Eng; 2015 Mar; 28():213-222. PubMed ID: 25638686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris.
    Weninger A; Hatzl AM; Schmid C; Vogl T; Glieder A
    J Biotechnol; 2016 Oct; 235():139-49. PubMed ID: 27015975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simplified CRISPR-Cas genome editing for Saccharomyces cerevisiae.
    Generoso WC; Gottardi M; Oreb M; Boles E
    J Microbiol Methods; 2016 Aug; 127():203-205. PubMed ID: 27327211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-copy genome integration of 2,3-butanediol biosynthesis pathway in Saccharomyces cerevisiae via in vivo DNA assembly and replicative CRISPR-Cas9 mediated delta integration.
    Huang S; Geng A
    J Biotechnol; 2020 Feb; 310():13-20. PubMed ID: 32006629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Cas9-Mediated Genome Editing and Transcriptional Control in Yarrowia lipolytica.
    Schwartz C; Wheeldon I
    Methods Mol Biol; 2018; 1772():327-345. PubMed ID: 29754237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving CRISPR/Cas9-mediated genome editing efficiency in Yarrowia lipolytica using direct tRNA-sgRNA fusions.
    Abdel-Mawgoud AM; Stephanopoulos G
    Metab Eng; 2020 Nov; 62():106-115. PubMed ID: 32758536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.