These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 37323689)

  • 21. Application of 2D Materials to Potassium-Ion Hybrid Capacitors.
    Zhang D; Li L; Deng J; Gou Y; Fang J; Cui H; Zhao Y; Shang K
    ChemSusChem; 2021 May; 14(9):1974-1986. PubMed ID: 33829675
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent Progress in Carbonaceous and Redox-Active Nanoarchitectures for Hybrid Supercapacitors: Performance Evaluation, Challenges, and Future Prospects.
    Shah SS; Aziz MA; Yamani ZH
    Chem Rec; 2022 Jul; 22(7):e202200018. PubMed ID: 35426239
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent Advanced Supercapacitor: A Review of Storage Mechanisms, Electrode Materials, Modification, and Perspectives.
    Kumar N; Kim SB; Lee SY; Park SJ
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296898
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of metal in Schiff bases of chitosan adsorbed on glassy carbon electrode in the inhibition of sphingomyelinase C toxin.
    Caro-Díaz CA; Lillo-Arroyo L; Valenzuela-Melgarejo FJ; Roudergue-Zúñiga V; Cabello-Guzmán G
    Food Chem Toxicol; 2018 Oct; 120():662-667. PubMed ID: 30076916
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolution of 3D Printing Methods and Materials for Electrochemical Energy Storage.
    Egorov V; Gulzar U; Zhang Y; Breen S; O'Dwyer C
    Adv Mater; 2020 Jul; 32(29):e2000556. PubMed ID: 32510631
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanostructured Transition Metal Oxides on Carbon Fibers for Supercapacitor and Li-Ion Battery Electrodes: An Overview.
    González-Banciella A; Martinez-Diaz D; Sánchez M; Ureña A
    Int J Mol Sci; 2024 Aug; 25(15):. PubMed ID: 39126084
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Borocarbonitride-Based Emerging Materials for Supercapacitor Applications: Recent Advances, Challenges, and Future Perspectives.
    Radhakrishnan S; Patra A; Manasa G; Belgami MA; Mun Jeong S; Rout CS
    Adv Sci (Weinh); 2024 Jan; 11(4):e2305325. PubMed ID: 38009510
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Designing Structural Electrochemical Energy Storage Systems: A Perspective on the Role of Device Chemistry.
    Navarro-Suárez AM; Shaffer MSP
    Front Chem; 2021; 9():810781. PubMed ID: 35047483
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Review of Supercapacitors Based on Graphene and Redox-Active Organic Materials.
    Li Q; Horn M; Wang Y; MacLeod J; Motta N; Liu J
    Materials (Basel); 2019 Feb; 12(5):. PubMed ID: 30818843
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface chemistry and structure manipulation of graphene-related materials to address the challenges of electrochemical energy storage.
    Sun Y; Sun J; Sanchez JS; Xia Z; Xiao L; Chen R; Palermo V
    Chem Commun (Camb); 2023 Feb; 59(18):2571-2583. PubMed ID: 36749576
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanoarchitectures for Metal-Organic Framework-Derived Nanoporous Carbons toward Supercapacitor Applications.
    Salunkhe RR; Kaneti YV; Kim J; Kim JH; Yamauchi Y
    Acc Chem Res; 2016 Dec; 49(12):2796-2806. PubMed ID: 27993000
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries.
    Lee S; Kwon G; Ku K; Yoon K; Jung SK; Lim HD; Kang K
    Adv Mater; 2018 Oct; 30(42):e1704682. PubMed ID: 29582467
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Base-Free Synthesis and Photophysical Properties of New Schiff Bases Containing Indole Moiety.
    Soliman AIA; Sayed M; Elshanawany MM; Younis O; Ahmed M; Kamal El-Dean AM; Abdel-Wahab AA; Wachtveitl J; Braun M; Fatehi P; Tolba MS
    ACS Omega; 2022 Mar; 7(12):10178-10186. PubMed ID: 35382296
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal-Organic Frameworks (MOFs) Derived Materials Used in Zn-Air Battery.
    Song D; Hu C; Gao Z; Yang B; Li Q; Zhan X; Tong X; Tian J
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079218
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metal-Organic Framework-Based Materials for Advanced Sodium Storage: Development and Anticipation.
    Zhou JE; Reddy RCK; Zhong A; Li Y; Huang Q; Lin X; Qian J; Yang C; Manke I; Chen R
    Adv Mater; 2024 Apr; 36(16):e2312471. PubMed ID: 38193792
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Beyond Graphene Anode Materials for Emerging Metal Ion Batteries and Supercapacitors.
    Mukherjee S; Ren Z; Singh G
    Nanomicro Lett; 2018; 10(4):70. PubMed ID: 30393718
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rationally Designed Bimetallic Co-Ni Sulfide Microspheres as High-Performance Battery-Type Electrode for Hybrid Supercapacitors.
    Rajesh JA; Park JY; Manikandan R; Ahn KS
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558288
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Asymmetric Supercapacitor Electrodes and Devices.
    Choudhary N; Li C; Moore J; Nagaiah N; Zhai L; Jung Y; Thomas J
    Adv Mater; 2017 Jun; 29(21):. PubMed ID: 28244158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.