These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 37323701)

  • 1. Interfacial wettability and mass transfer characterizations for gas-liquid-solid triple-phase catalysis.
    Shi R; Shang L; Zhou C; Zhao Y; Zhang T
    Exploration (Beijing); 2022 Jun; 2(3):20210046. PubMed ID: 37323701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review of non-reactive and reactive wetting of liquids on surfaces.
    Kumar G; Prabhu KN
    Adv Colloid Interface Sci; 2007 Jun; 133(2):61-89. PubMed ID: 17560842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous Electric Fields Play a Key Role in Thermochemical Catalysis at Metal-Liquid Interfaces.
    Wesley TS; Román-Leshkov Y; Surendranath Y
    ACS Cent Sci; 2021 Jun; 7(6):1045-1055. PubMed ID: 34235265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Critical Review of Membrane Wettability in Membrane Distillation from the Perspective of Interfacial Interactions.
    Chang H; Liu B; Zhang Z; Pawar R; Yan Z; Crittenden JC; Vidic RD
    Environ Sci Technol; 2021 Feb; 55(3):1395-1418. PubMed ID: 33314911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water-Assisted Chemical Route Towards the Oxygen Evolution Reaction at the Hydrated (110) Ruthenium Oxide Surface: Heterogeneous Catalysis via DFT-MD and Metadynamics Simulations.
    Creazzo F; Luber S
    Chemistry; 2021 Dec; 27(68):17024-17037. PubMed ID: 34486184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superwettability-Based Interfacial Chemical Reactions.
    Wu Y; Feng J; Gao H; Feng X; Jiang L
    Adv Mater; 2019 Feb; 31(8):e1800718. PubMed ID: 30592333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid-liquid-liquid wettability and its prediction with surface free energy models.
    Stammitti-Scarpone A; Acosta EJ
    Adv Colloid Interface Sci; 2019 Feb; 264():28-46. PubMed ID: 30396508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of wettability and saturation on liquid-liquid interfacial area in porous media.
    Jain V; Bryant S; Sharma M
    Environ Sci Technol; 2003 Feb; 37(3):584-91. PubMed ID: 12630476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Switchable wetting of oxygen-evolving oxide catalysts.
    Shen TH; Spillane L; Peng J; Shao-Horn Y; Tileli V
    Nat Catal; 2022; 5(1):30-36. PubMed ID: 35141468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing Liquid-Solid and Vapor-Liquid-Solid Interfaces of Hierarchical Surfaces Using High-Resolution Microscopy.
    Flynn Bolte KT; Balaraman RP; Jiao K; Tustison M; Kirkwood KS; Zhou C; Kohli P
    Langmuir; 2018 Mar; 34(12):3720-3730. PubMed ID: 29486565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boosting Gas Involved Reactions at Nanochannel Reactor with Joint Gas-Solid-Liquid Interfaces and Controlled Wettability.
    Mi L; Yu J; He F; Jiang L; Wu Y; Yang L; Han X; Li Y; Liu A; Wei W; Zhang Y; Tian Y; Liu S; Jiang L
    J Am Chem Soc; 2017 Aug; 139(30):10441-10446. PubMed ID: 28665600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.
    Gao W; Hood ZD; Chi M
    Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hot Electron Phenomena at Solid-Liquid Interfaces.
    Lee SW; Jeon B; Lee H; Park JY
    J Phys Chem Lett; 2022 Oct; 13(40):9435-9448. PubMed ID: 36194546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient wettability-controlled electroreduction of CO
    Shi R; Guo J; Zhang X; Waterhouse GIN; Han Z; Zhao Y; Shang L; Zhou C; Jiang L; Zhang T
    Nat Commun; 2020 Jun; 11(1):3028. PubMed ID: 32541875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering the Interface of Carbon Electrocatalysts at the Triple Point for Enhanced Oxygen Reduction Reaction.
    Qiao M; Titirici MM
    Chemistry; 2018 Dec; 24(69):18374-18384. PubMed ID: 30307068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apparent-contact-angle model at partial wetting and evaporation: impact of surface forces.
    Janeček V; Nikolayev VS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012404. PubMed ID: 23410341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanostructure Determines the Wettability of Gold Surfaces by Ionic Liquid Ultrathin Films.
    Borghi F; Mirigliano M; Lenardi C; Milani P; Podestà A
    Front Chem; 2021; 9():619432. PubMed ID: 33614601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiscale Principles To Boost Reactivity in Gas-Involving Energy Electrocatalysis.
    Tang C; Wang HF; Zhang Q
    Acc Chem Res; 2018 Apr; 51(4):881-889. PubMed ID: 29384364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Alternative Approach to Evaluate the Wettability of Carbon Fiber Substrates.
    Sow PK; Prass S; Mérida W
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):22029-35. PubMed ID: 26375575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.