These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 37323701)

  • 41. Understanding and Engineering Interfacial Adhesion in Solid-State Batteries with Metallic Anodes.
    Seymour ID; Quérel E; Brugge RH; Pesci FM; Aguadero A
    ChemSusChem; 2023 Jun; 16(12):e202202215. PubMed ID: 36892133
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nanofluid surface wettability through asymptotic contact angle.
    Vafaei S; Wen D; Borca-Tasciuc T
    Langmuir; 2011 Mar; 27(6):2211-8. PubMed ID: 21338112
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermal Transport across SiC-Water Interfaces.
    Gonzalez-Valle CU; Kumar S; Ramos-Alvarado B
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):29179-29186. PubMed ID: 30063129
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bioinspired Interfaces with Superwettability: From Materials to Chemistry.
    Su B; Tian Y; Jiang L
    J Am Chem Soc; 2016 Feb; 138(6):1727-48. PubMed ID: 26652501
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reversible Adsorption of Nanoparticles at Surfactant-Laden Liquid-Liquid Interfaces.
    Smits J; Vieira F; Bisswurn B; Rezwan K; Maas M
    Langmuir; 2019 Aug; 35(34):11089-11098. PubMed ID: 31368712
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interfacial Redox Catalysis on Gold Nanofilms at Soft Interfaces.
    Smirnov E; Peljo P; Scanlon MD; Girault HH
    ACS Nano; 2015 Jun; 9(6):6565-75. PubMed ID: 26039934
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Redox Electrocatalysis of Floating Nanoparticles: Determining Electrocatalytic Properties without the Influence of Solid Supports.
    Peljo P; Scanlon MD; Olaya AJ; Rivier L; Smirnov E; Girault HH
    J Phys Chem Lett; 2017 Aug; 8(15):3564-3575. PubMed ID: 28707892
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The impact of additives found in industrial formulations of TCE on the wettability of sandstone.
    Harrold G; Lerner DN; Leharne SA
    J Contam Hydrol; 2005 Nov; 80(1-2):1-17. PubMed ID: 16099534
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhancing Electrocatalytic Hydrodechlorination through Interfacial Microenvironment Modulation.
    Fan Z; Zhao H; Wang K; Ran W; Sun JF; Liu J; Liu R
    Environ Sci Technol; 2023 Jan; ():. PubMed ID: 36617724
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modeling Interfacial Interaction between Gas Molecules and Semiconductor Metal Oxides: A New View Angle on Gas Sensing.
    Yuan C; Ma J; Zou Y; Li G; Xu H; Sysoev VV; Cheng X; Deng Y
    Adv Sci (Weinh); 2022 Nov; 9(33):e2203594. PubMed ID: 36116122
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Review of droplet dynamics and dropwise condensation enhancement: Theory, experiments and applications.
    Wang X; Xu B; Chen Z; Del Col D; Li D; Zhang L; Mou X; Liu Q; Yang Y; Cao Q
    Adv Colloid Interface Sci; 2022 Jul; 305():102684. PubMed ID: 35525088
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Flow chemistry: intelligent processing of gas-liquid transformations using a tube-in-tube reactor.
    Brzozowski M; O'Brien M; Ley SV; Polyzos A
    Acc Chem Res; 2015 Feb; 48(2):349-62. PubMed ID: 25611216
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Triple-Phase Interface Engineering over an In
    Wang S; Wu Z; Xu C; Jiang S; Peng HQ; Zhang W; Liu B; Song YF
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45423-45432. PubMed ID: 36190016
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Special Topic on Interfacial Electrochemistry and Photo(electro)catalysis.
    Lian T; Koper MTM; Reuter K; Subotnik JE
    J Chem Phys; 2019 Jan; 150(4):041401. PubMed ID: 30709260
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ion-transfer- and photo-electrochemistry at liquid|liquid|solid electrode triple phase boundary junctions: perspectives.
    Marken F; Watkins JD; Collins AM
    Phys Chem Chem Phys; 2011 Jun; 13(21):10036-47. PubMed ID: 21487620
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Solid-Liquid-Liquid Wettability of Surfactant-Oil-Water Systems and Its Prediction around the Phase Inversion Point.
    Stammitti-Scarpone A; Acosta EJ
    Langmuir; 2019 Mar; 35(12):4305-4318. PubMed ID: 30821467
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recent advances in the chemical oxidation of gaseous volatile organic compounds (VOCs) in liquid phase.
    Li C; He L; Yao X; Yao Z
    Chemosphere; 2022 May; 295():133868. PubMed ID: 35131275
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interface Engineering of Binder-Free Earth-Abundant Electrocatalysts for Efficient Advanced Energy Conversion.
    Wang P; Wang B
    ChemSusChem; 2020 Sep; 13(18):4795-4811. PubMed ID: 32696601
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Crystal face dependent intrinsic wettability of metal oxide surfaces.
    Zhu Z; Yu Z; Yun FF; Pan D; Tian Y; Jiang L; Wang X
    Natl Sci Rev; 2021 Jan; 8(1):nwaa166. PubMed ID: 34691554
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparing the catalytic oxidation of ethanol at the solid-gas and solid-liquid interfaces over size-controlled Pt nanoparticles: striking differences in kinetics and mechanism.
    Sapi A; Liu F; Cai X; Thompson CM; Wang H; An K; Krier JM; Somorjai GA
    Nano Lett; 2014 Nov; 14(11):6727-30. PubMed ID: 25337984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.