These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37324225)

  • 1. Feasibility of Dedicated Breast Positron Emission Tomography Image Denoising Using a Residual Neural Network.
    Itagaki K; Miyake KK; Tanoue M; Oishi T; Kataoka M; Kawashima M; Toi M; Nakamoto Y
    Asia Ocean J Nucl Med Biol; 2023; 11(2):145-157. PubMed ID: 37324225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning generation of preclinical positron emission tomography (PET) images from low-count PET with task-based performance assessment.
    Dutta K; Laforest R; Luo J; Jha AK; Shoghi KI
    Med Phys; 2024 Jun; 51(6):4324-4339. PubMed ID: 38710222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning based bilateral filtering for edge-preserving denoising of respiratory-gated PET.
    Maus J; Nikulin P; Hofheinz F; Petr J; Braune A; Kotzerke J; van den Hoff J
    EJNMMI Phys; 2024 Jul; 11(1):58. PubMed ID: 38977533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of deep learning-based denoising methods in cardiac SPECT.
    Sohlberg A; Kangasmaa T; Constable C; Tikkakoski A
    EJNMMI Phys; 2023 Feb; 10(1):9. PubMed ID: 36752847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning with noise-to-noise training for denoising in SPECT myocardial perfusion imaging.
    Liu J; Yang Y; Wernick MN; Pretorius PH; King MA
    Med Phys; 2021 Jan; 48(1):156-168. PubMed ID: 33145782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image Denoising of Low-Dose PET Mouse Scans with Deep Learning: Validation Study for Preclinical Imaging Applicability.
    Muller FM; Vervenne B; Maebe J; Blankemeyer E; Sellmyer MA; Zhou R; Karp JS; Vanhove C; Vandenberghe S
    Mol Imaging Biol; 2024 Feb; 26(1):101-113. PubMed ID: 37875748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation of quantitative accuracy for deep learning based denoising in oncological PET.
    Lu W; Onofrey JA; Lu Y; Shi L; Ma T; Liu Y; Liu C
    Phys Med Biol; 2019 Aug; 64(16):165019. PubMed ID: 31307019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A position-adaptive noise-reduction method using a deep denoising filter bank for dedicated breast positron emission tomography images.
    Tsukijima M; Teramoto A; Kojima A; Yamamuro O; Tamaki T; Fujita H
    Phys Eng Sci Med; 2024 Mar; 47(1):73-85. PubMed ID: 37870728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sub-minute acquisition with deep learning-based image filter in the diagnosis of colorectal cancers using total-body
    Liu E; Lyu Z; Yang Y; Lv Y; Zhao Y; Zhang X; Sun T; Jiang L; Liu Z
    EJNMMI Res; 2023 Jul; 13(1):66. PubMed ID: 37428417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-local mean denoising using multiple PET reconstructions.
    Arabi H; Zaidi H
    Ann Nucl Med; 2021 Feb; 35(2):176-186. PubMed ID: 33244745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Full-count PET recovery from low-count image using a dilated convolutional neural network.
    Spuhler K; Serrano-Sosa M; Cattell R; DeLorenzo C; Huang C
    Med Phys; 2020 Oct; 47(10):4928-4938. PubMed ID: 32687608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatially guided nonlocal mean approach for denoising of PET images.
    Arabi H; Zaidi H
    Med Phys; 2020 Apr; 47(4):1656-1669. PubMed ID: 31955433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Impact of Artificial Intelligence CNN Based Denoising on FDG PET Radiomics.
    Jaudet C; Weyts K; Lechervy A; Batalla A; Bardet S; Corroyer-Dulmont A
    Front Oncol; 2021; 11():692973. PubMed ID: 34504782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AntiHalluciNet: A Potential Auditing Tool of the Behavior of Deep Learning Denoising Models in Low-Dose Computed Tomography.
    Ahn C; Kim JH
    Diagnostics (Basel); 2023 Dec; 14(1):. PubMed ID: 38201404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning-Based Denoising in High-Speed Portable Reflectance Confocal Microscopy.
    Zhao J; Jain M; Harris UG; Kose K; Curiel-Lewandrowski C; Kang D
    Lasers Surg Med; 2021 Aug; 53(6):880-891. PubMed ID: 33891330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A personalized deep learning denoising strategy for low-count PET images.
    Liu Q; Liu H; Mirian N; Ren S; Viswanath V; Karp J; Surti S; Liu C
    Phys Med Biol; 2022 Jul; 67(14):. PubMed ID: 35697017
    [No Abstract]   [Full Text] [Related]  

  • 17. Deep learning-assisted PET imaging achieves fast scan/low-dose examination.
    Xing Y; Qiao W; Wang T; Wang Y; Li C; Lv Y; Xi C; Liao S; Qian Z; Zhao J
    EJNMMI Phys; 2022 Feb; 9(1):7. PubMed ID: 35122172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of image quality in PET using post-reconstruction hybrid spatial-frequency domain filtering.
    Arabi H; Zaidi H
    Phys Med Biol; 2018 Oct; 63(21):215010. PubMed ID: 30272565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of dedicated breast positron emission tomography and whole-body positron emission tomography/computed tomography images: a common phantom study.
    Satoh Y; Motosugi U; Imai M; Onishi H
    Ann Nucl Med; 2020 Feb; 34(2):119-127. PubMed ID: 31768819
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Yie SY; Kang SK; Hwang D; Lee JS
    Nucl Med Mol Imaging; 2020 Dec; 54(6):299-304. PubMed ID: 33282001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.