These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 37324537)
1. Solvent-in-Salt Electrolytes for Fluoride Ion Batteries. Alshangiti O; Galatolo G; Rees GJ; Guo H; Quirk JA; Dawson JA; Pasta M ACS Energy Lett; 2023 Jun; 8(6):2668-2673. PubMed ID: 37324537 [TBL] [Abstract][Full Text] [Related]
2. A Water-in-Salt Electrolyte for Room-Temperature Fluoride-Ion Batteries Based on a Hydrophobic-Hydrophilic Salt. Zou P; Wang C; He Y; Xin HL; Lin R Nano Lett; 2024 May; 24(18):5429-5435. PubMed ID: 38682885 [TBL] [Abstract][Full Text] [Related]
3. Tuning the Electrolyte Solvation Structure via a Nonaqueous Co-Solvent to Enable High-Voltage Aqueous Lithium-Ion Batteries. Liu D; Yuan L; Li X; Chen J; Xiong R; Meng J; Zhu S; Huang Y ACS Appl Mater Interfaces; 2022 Apr; 14(15):17585-17593. PubMed ID: 35385244 [TBL] [Abstract][Full Text] [Related]
4. Rocking-Chair Aqueous Fluoride-Ion Batteries Enabled by Hydrogen Bonding Competition. Wang H; Lei C; Liu T; Xu C; He X; Liang X Angew Chem Int Ed Engl; 2024 May; 63(19):e202401483. PubMed ID: 38488325 [TBL] [Abstract][Full Text] [Related]
5. A Fluoride-Ion-Conducting Solid Electrolyte with Both High Conductivity and Excellent Electrochemical Stability. Wang J; Hao J; Duan C; Wang X; Wang K; Ma C Small; 2022 Feb; 18(5):e2104508. PubMed ID: 34837307 [TBL] [Abstract][Full Text] [Related]
6. Atomic Insights into the Fundamental Interactions in Lithium Battery Electrolytes. Chen X; Zhang Q Acc Chem Res; 2020 Sep; 53(9):1992-2002. PubMed ID: 32883067 [TBL] [Abstract][Full Text] [Related]
7. Room-temperature cycling of metal fluoride electrodes: Liquid electrolytes for high-energy fluoride ion cells. Davis VK; Bates CM; Omichi K; Savoie BM; Momčilović N; Xu Q; Wolf WJ; Webb MA; Billings KJ; Chou NH; Alayoglu S; McKenney RK; Darolles IM; Nair NG; Hightower A; Rosenberg D; Ahmed M; Brooks CJ; Miller TF; Grubbs RH; Jones SC Science; 2018 Dec; 362(6419):1144-1148. PubMed ID: 30523107 [TBL] [Abstract][Full Text] [Related]
8. Effect of Building Block Connectivity and Ion Solvation on Electrochemical Stability and Ionic Conductivity in Novel Fluoroether Electrolytes. Ma P; Mirmira P; Amanchukwu CV ACS Cent Sci; 2021 Jul; 7(7):1232-1244. PubMed ID: 34345673 [TBL] [Abstract][Full Text] [Related]
9. Anodic Behavior of the Aluminum Current Collector in Imide-Based Electrolytes: Influence of Solvent, Operating Temperature, and Native Oxide-Layer Thickness. Meister P; Qi X; Kloepsch R; Krämer E; Streipert B; Winter M; Placke T ChemSusChem; 2017 Feb; 10(4):804-814. PubMed ID: 28127874 [TBL] [Abstract][Full Text] [Related]
10. Solvent versus Anion Chemistry: Unveiling the Structure-Dependent Reactivity in Tailoring Electrochemical Interphases for Lithium-Metal Batteries. Ruan D; Tan L; Chen S; Fan J; Nian Q; Chen L; Wang Z; Ren X JACS Au; 2023 Mar; 3(3):953-963. PubMed ID: 37006759 [TBL] [Abstract][Full Text] [Related]
11. Tuning the Solvent Alkyl Chain to Tailor Electrolyte Solvation for Stable Li-Metal Batteries. Ding K; Xu C; Peng Z; Long X; Shi J; Li Z; Zhang Y; Lai J; Chen L; Cai YP; Zheng Q ACS Appl Mater Interfaces; 2022 Oct; 14(39):44470-44478. PubMed ID: 36130034 [TBL] [Abstract][Full Text] [Related]
12. The Hydrotropic Effect of Ionic Liquids in Water-in-Salt Electrolytes*. Becker M; Rentsch D; Reber D; Aribia A; Battaglia C; Kühnel RS Angew Chem Int Ed Engl; 2021 Jun; 60(25):14100-14108. PubMed ID: 33786945 [TBL] [Abstract][Full Text] [Related]
13. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
14. Interfacial Model Deciphering High-Voltage Electrolytes for High Energy Density, High Safety, and Fast-Charging Lithium-Ion Batteries. Zou Y; Cao Z; Zhang J; Wahyudi W; Wu Y; Liu G; Li Q; Cheng H; Zhang D; Park GT; Cavallo L; Anthopoulos TD; Wang L; Sun YK; Ming J Adv Mater; 2021 Oct; 33(43):e2102964. PubMed ID: 34510582 [TBL] [Abstract][Full Text] [Related]
15. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Luo JY; Cui WJ; He P; Xia YY Nat Chem; 2010 Sep; 2(9):760-5. PubMed ID: 20729897 [TBL] [Abstract][Full Text] [Related]
16. Room-temperature reversible F-ion batteries based on sulfone electrolytes with a mild anion acceptor additive. Yu Y; Lei M; Li C Mater Horiz; 2024 Jan; 11(2):480-489. PubMed ID: 37965817 [TBL] [Abstract][Full Text] [Related]
17. Constructing a Stable Interface Layer by Tailoring Solvation Chemistry in Carbonate Electrolytes for High-Performance Lithium-Metal Batteries. Piao Z; Xiao P; Luo R; Ma J; Gao R; Li C; Tan J; Yu K; Zhou G; Cheng HM Adv Mater; 2022 Feb; 34(8):e2108400. PubMed ID: 34859925 [TBL] [Abstract][Full Text] [Related]
18. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries. Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667 [TBL] [Abstract][Full Text] [Related]
19. A Zero-Strain Insertion Cathode Material for Room-Temperature Fluoride-Ion Batteries. Zhang S; Wang T; Zhang J; Miao Y; Yin Q; Wu Z; Wu Y; Yuan Q; Han J ACS Appl Mater Interfaces; 2022 Jun; 14(21):24518-24525. PubMed ID: 35603940 [TBL] [Abstract][Full Text] [Related]
20. Quasi-Solid-State Electrolyte Synthesized Using a Thiol-Ene Click Chemistry for Rechargeable Lithium Metal Batteries with Enhanced Safety. Park S; Jeong B; Lim DA; Lee CH; Ahn KH; Lee JH; Kim DW ACS Appl Mater Interfaces; 2020 Apr; 12(17):19553-19562. PubMed ID: 32251586 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]