These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 37324559)

  • 1. Theoretical insights into the methane catalytic decomposition on graphene nanoribbons edges.
    Xavier NF; Payne AJR; Bauerfeldt GF; Sacchi M
    Front Chem; 2023; 11():1172687. PubMed ID: 37324559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beryllium and boron decoration forms planar tetracoordinate carbon strips at the edge of graphene nanoribbons.
    Xiao B; Ding YH; Sun CC
    Phys Chem Chem Phys; 2011 Feb; 13(7):2732-7. PubMed ID: 21152527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic transport through zigzag/armchair graphene nanoribbon heterojunctions.
    Li XF; Wang LL; Chen KQ; Luo Y
    J Phys Condens Matter; 2012 Mar; 24(9):095801. PubMed ID: 22317831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-Principles Microkinetic Modeling Unravelling the Performance of Edge-Decorated Nanocarbons for Hydrogen Production from Methane.
    Xavier NF; Bauerfeldt GF; Sacchi M
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):6951-6962. PubMed ID: 36700729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving gas sensing properties of armchair graphene nanoribbons by oxygen-hydrogen terminated edges.
    Jamalzadeh Kheirabadi S; Ghayour R; Sanaee M
    Nanotechnology; 2019 Oct; 30(43):435501. PubMed ID: 31300615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methane-induced Activation Mechanism of Fused Ferric Oxide-Alumina Catalysts during Methane Decomposition.
    Reddy Enakonda L; Zhou L; Saih Y; Ould-Chikh S; Lopatin S; Gary D; Del-Gallo P; Basset JM
    ChemSusChem; 2016 Aug; 9(15):1911-5. PubMed ID: 27345621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methanol decomposition reactions over a boron-doped graphene supported Ru-Pt catalyst.
    Damte JY; Lyu SL; Leggesse EG; Jiang JC
    Phys Chem Chem Phys; 2018 Apr; 20(14):9355-9363. PubMed ID: 29564450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic, transport, magnetic, and optical properties of graphene nanoribbons and their optical sensing applications: A comprehensive review.
    Kumar S; Pratap S; Kumar V; Mishra RK; Gwag JS; Chakraborty B
    Luminescence; 2023 Jul; 38(7):909-953. PubMed ID: 35850156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bandgap engineering of zigzag graphene nanoribbons by manipulating edge states via defective boundaries.
    Zhang A; Wu Y; Ke SH; Feng YP; Zhang C
    Nanotechnology; 2011 Oct; 22(43):435702. PubMed ID: 21967829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain dependence of the heat transport properties of graphene nanoribbons.
    Yeo PS; Loh KP; Gan CK
    Nanotechnology; 2012 Dec; 23(49):495702. PubMed ID: 23149343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-parameter charge pump in a zigzag graphene nanoribbon.
    Gu Y; Yang YH; Wang J; Chan KS
    J Phys Condens Matter; 2009 Oct; 21(40):405301. PubMed ID: 21832408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Edge structural stability and kinetics of graphene chemical vapor deposition growth.
    Shu H; Chen X; Tao X; Ding F
    ACS Nano; 2012 Apr; 6(4):3243-50. PubMed ID: 22417179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen adsorption study. Formation of quantum dots on graphene nanoribbons within tight-binding approach.
    Kvashnin AG; Kvashnina OP; Kvashnin DG
    Nanotechnology; 2015 May; 26(17):175704. PubMed ID: 25835030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of COx-Free Hydrogen and Few-Layer Graphene Nanoplatelets by Catalytic Decomposition of Methane over Ni-Lignin-Derived Nanoparticles.
    Yan Q; Ketelboeter T; Cai Z
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene-edge-supported iron dual-atom for oxygen reduction electrocatalysts.
    Sumbowo JF; Ihsan FA; Fathurrahman F; Amalia N; Akbar FT; Yudistira HT; Mobarak NN; Dipojono HK; Wella SA; Saputro AG
    Phys Chem Chem Phys; 2023 Dec; 25(47):32637-32647. PubMed ID: 38009535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic methane decomposition on CNT-supported Fe-catalysts.
    Yang M; Baeyens J; Li S; Li Z; Zhang H
    J Environ Manage; 2024 Aug; 365():121592. PubMed ID: 38963959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dehydrogenation of ammonia on free-standing and epitaxial hexagonal boron nitride.
    Payne AJR; Xavier NF; Bauerfeldt GF; Sacchi M
    Phys Chem Chem Phys; 2022 Aug; 24(34):20426-20436. PubMed ID: 35983875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Periodic density functional theory analysis of direct methane conversion into ethylene and aromatic hydrocarbons catalyzed by Mo
    Yin F; Li MR; Wang GC
    Phys Chem Chem Phys; 2017 Aug; 19(33):22243-22255. PubMed ID: 28799585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Fe-loading in iron-based catalysts for the CH
    Yang M; Li S; Deng Y; Baeyens J; Zhang H
    J Environ Manage; 2023 Nov; 346():118999. PubMed ID: 37751646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.