These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 37324562)

  • 21. ATPase kinetics for wild-type Saccharomyces cerevisiae F1-ATPase and F1-ATPase with the beta-subunit Thr197-->Ser mutation.
    Mueller DM; Indyk V; McGill L
    Eur J Biochem; 1994 Jun; 222(3):991-9. PubMed ID: 8026510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interpretation of the mechanism of action of antituberculosis drug bedaquiline based on a novel two-ion theory of energy coupling in ATP synthesis.
    Nath S
    Bioeng Transl Med; 2019 Jan; 4(1):164-170. PubMed ID: 30680327
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acceleration of unisite catalysis of mitochondrial F1-adenosinetriphosphatase by ATP, ADP and pyrophosphate--hydrolysis and release of the previously bound [gamma-32P]ATP.
    García JJ; Gómez-Puyou A; Maldonado E; Tuena De Gómez-Puyou M
    Eur J Biochem; 1997 Oct; 249(2):622-9. PubMed ID: 9370375
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The six steps of the complete F
    Sobti M; Ueno H; Noji H; Stewart AG
    Nat Commun; 2021 Aug; 12(1):4690. PubMed ID: 34344897
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Charge transfer across biomembranes: A solution to the conundrum of high desolvation free energy penalty in ion transport.
    Nath S
    Biophys Chem; 2021 Aug; 275():106604. PubMed ID: 33957504
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catalysis and rotation of F1 motor: cleavage of ATP at the catalytic site occurs in 1 ms before 40 degree substep rotation.
    Shimabukuro K; Yasuda R; Muneyuki E; Hara KY; Kinosita K; Yoshida M
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):14731-6. PubMed ID: 14657340
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of water in processes of energy transduction: Ca2+-transport ATPase and inorganic pyrophosphatase.
    de Meis L
    Biochem Soc Symp; 1985; 50():97-125. PubMed ID: 2428374
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of ATP hydrolysis dependent rotation of bacterial ATP synthase.
    Nakano A; Kishikawa JI; Mitsuoka K; Yokoyama K
    Nat Commun; 2023 Jul; 14(1):4090. PubMed ID: 37429854
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two-ion theory of energy coupling in ATP synthesis rectifies a fundamental flaw in the governing equations of the chemiosmotic theory.
    Nath S
    Biophys Chem; 2017 Nov; 230():45-52. PubMed ID: 28882384
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Catalytic sites of Escherichia coli F1-ATPase. Characterization of unisite catalysis at varied pH.
    al-Shawi MK; Senior AE
    Biochemistry; 1992 Jan; 31(3):878-85. PubMed ID: 1531027
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single site catalysis of the F1-ATPase from Saccharomyces cerevisiae and the effect of inorganic phosphate on it.
    Konishi J; Yohda M; Hashimoto T; Yoshida M
    J Biochem; 1987 Aug; 102(2):273-9. PubMed ID: 2889726
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct identification of the rotary angle of ATP cleavage in F
    Hasimoto Y; Sugawa M; Nishiguchi Y; Aeba F; Tagawa A; Suga K; Tanaka N; Ueno H; Yamashita H; Yokota R; Masaike T; Nishizaka T
    Biophys J; 2023 Feb; 122(3):554-564. PubMed ID: 36560882
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unisite catalysis without rotation of the gamma-epsilon domain in Escherichia coli F1-ATPase.
    García JJ; Capaldi RA
    J Biol Chem; 1998 Jun; 273(26):15940-5. PubMed ID: 9632641
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The new unified theory of ATP synthesis/hydrolysis and muscle contraction, its manifold fundamental consequences and mechanistic implications and its applications in health and disease.
    Nath S
    Int J Mol Sci; 2008 Sep; 9(9):1784-1840. PubMed ID: 19325832
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elucidating a Complex Mechanism.
    Wray V
    Function (Oxf); 2023; 4(6):zqad051. PubMed ID: 37799324
    [No Abstract]   [Full Text] [Related]  

  • 36. Unisite hydrolysis of [gamma 32 P]ATP by soluble mitochondrial F1-ATPase and its release by excess ADP and ATP. Effect of trifluoperazine.
    García JJ; Gómez-Puyou A; de Gómez-Puyou MT
    J Bioenerg Biomembr; 1997 Feb; 29(1):61-70. PubMed ID: 9067803
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ATP hydrolysis in the betaTP and betaDP catalytic sites of F1-ATPase.
    Dittrich M; Hayashi S; Schulten K
    Biophys J; 2004 Nov; 87(5):2954-67. PubMed ID: 15315950
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermodynamic analysis of F1-ATPase rotary catalysis using high-speed imaging.
    Watanabe R; Minagawa Y; Noji H
    Protein Sci; 2014 Dec; 23(12):1773-9. PubMed ID: 25262814
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Time-Resolved Oxygen Exchange Measurements Offer Novel Mechanistic Insights into Enzyme-Catalyzed ATP Synthesis during Photophosphorylation.
    Mehta R; Singh J; Nath S
    J Phys Chem B; 2020 Jun; 124(25):5139-5148. PubMed ID: 32484674
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemomechanical coupling mechanism of F(1)-ATPase: catalysis and torque generation.
    Watanabe R; Noji H
    FEBS Lett; 2013 Apr; 587(8):1030-5. PubMed ID: 23395605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.