These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 37324655)
21. An Isolation System to Collect High Quality and Purity Extracellular Vesicles from Serum. Yang J; Gao X; Xing X; Huang H; Tang Q; Ma S; Xu X; Liang C; Li M; Liao L; Tian W Int J Nanomedicine; 2021; 16():6681-6692. PubMed ID: 34616151 [TBL] [Abstract][Full Text] [Related]
22. Acidification effects on isolation of extracellular vesicles from bovine milk. Rahman MM; Shimizu K; Yamauchi M; Takase H; Ugawa S; Okada A; Inoshima Y PLoS One; 2019; 14(9):e0222613. PubMed ID: 31525238 [TBL] [Abstract][Full Text] [Related]
24. Purity Determines the Effect of Extracellular Vesicles Derived from Mesenchymal Stromal Cells. Forteza-Genestra MA; Antich-Rosselló M; Calvo J; Gayà A; Monjo M; Ramis JM Cells; 2020 Feb; 9(2):. PubMed ID: 32059497 [TBL] [Abstract][Full Text] [Related]
25. Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components. van Herwijnen MJ; Zonneveld MI; Goerdayal S; Nolte-'t Hoen EN; Garssen J; Stahl B; Maarten Altelaar AF; Redegeld FA; Wauben MH Mol Cell Proteomics; 2016 Nov; 15(11):3412-3423. PubMed ID: 27601599 [TBL] [Abstract][Full Text] [Related]
26. Impact of chemically defined culture media formulations on extracellular vesicle production by amniotic epithelial cells. Zhu D; Fang H; Kusuma GD; Schwab R; Barabadi M; Chan ST; McDonald H; Leong CM; Wallace EM; Greening DW; Lim R Proteomics; 2021 Jul; 21(13-14):e2000080. PubMed ID: 34081834 [TBL] [Abstract][Full Text] [Related]
27. Different isolation approaches lead to diverse glycosylated extracellular vesicle populations. Freitas D; Balmaña M; Poças J; Campos D; Osório H; Konstantinidi A; Vakhrushev SY; Magalhães A; Reis CA J Extracell Vesicles; 2019; 8(1):1621131. PubMed ID: 31236201 [TBL] [Abstract][Full Text] [Related]
28. Size-exclusion chromatography allows the isolation of EVs from the filamentous fungal plant pathogen Fusarium oxysporum f. sp. vasinfectum (Fov). Garcia-Ceron D; Dawson CS; Faou P; Bleackley MR; Anderson MA Proteomics; 2021 Jul; 21(13-14):e2000240. PubMed ID: 33609009 [TBL] [Abstract][Full Text] [Related]
29. The Proteome and Citrullinome of Magnadóttir B; Kraev I; Dodds AW; Lange S Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33467210 [TBL] [Abstract][Full Text] [Related]
31. Differential Adaptation of Tarnaud F; Gaucher F; do Carmo FLR; Illikoud N; Jardin J; Briard-Bion V; Guyomarc'h F; Gagnaire V; Jan G Front Microbiol; 2020; 11():549027. PubMed ID: 33335514 [No Abstract] [Full Text] [Related]
32. Size Exclusion Chromatography for Separating Extracellular Vesicles from Conditioned Cell Culture Media. Jones MT; Manioci SW; Russell AE J Vis Exp; 2022 May; (183):. PubMed ID: 35635450 [TBL] [Abstract][Full Text] [Related]
33. Isolation of a cytolytic subpopulation of extracellular vesicles derived from NK cells containing NKG7 and cytolytic proteins. Aarsund M; Nyman TA; Stensland ME; Wu Y; Inngjerdingen M Front Immunol; 2022; 13():977353. PubMed ID: 36189227 [TBL] [Abstract][Full Text] [Related]
34. Scalable purification of extracellular vesicles with high yield and purity using multimodal flowthrough chromatography. Bonner SE; van de Wakker SI; Phillips W; Willms E; Sluijter JPG; Hill AF; Wood MJA; Vader P J Extracell Biol; 2024 Feb; 3(2):e138. PubMed ID: 38939900 [TBL] [Abstract][Full Text] [Related]
35. Isolation of Extracellular Vesicles from Human Follicular Fluid: Size-Exclusion Chromatography versus Ultracentrifugation. Soares M; Pinto MM; Nobre RJ; de Almeida LP; da Graça Rasteiro M; Almeida-Santos T; Ramalho-Santos J; Sousa AP Biomolecules; 2023 Feb; 13(2):. PubMed ID: 36830647 [TBL] [Abstract][Full Text] [Related]
36. Improving the drying of Propionibacterium freudenreichii starter cultures. Jeantet R; Jan G Appl Microbiol Biotechnol; 2021 May; 105(9):3485-3494. PubMed ID: 33885925 [TBL] [Abstract][Full Text] [Related]
37. Characterization of Extracellular Vesicles from Entamoeba histolytica Identifies Roles in Intercellular Communication That Regulates Parasite Growth and Development. Sharma M; Morgado P; Zhang H; Ehrenkaufer G; Manna D; Singh U Infect Immun; 2020 Sep; 88(10):. PubMed ID: 32719158 [TBL] [Abstract][Full Text] [Related]
38. Reassessment of the Proteomic Composition and Function of Extracellular Vesicles in the Seminal Plasma. Wang H; Zhu Y; Tang C; Zhou Z; Wang Z; Li Z; Zheng X; Chen S; Zhou Y; Liang A; Li Y; Lin Y; Sun F Endocrinology; 2022 Jan; 163(1):. PubMed ID: 34647995 [TBL] [Abstract][Full Text] [Related]
39. Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation. Mol EA; Goumans MJ; Doevendans PA; Sluijter JPG; Vader P Nanomedicine; 2017 Aug; 13(6):2061-2065. PubMed ID: 28365418 [TBL] [Abstract][Full Text] [Related]
40. Isolation and Characterization of Cow-, Buffalo-, Sheep- and Goat-Milk-Derived Extracellular Vesicles. Samuel M; Sanwlani R; Pathan M; Anand S; Johnston EL; Ang CS; Kaparakis-Liaskos M; Mathivanan S Cells; 2023 Oct; 12(20):. PubMed ID: 37887335 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]