These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37324703)

  • 21. High-Depth Transcriptome Reveals Differences in Natural Haploid
    Hu Y; Šmarda P; Liu G; Wang B; Gao X; Guo Q
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012222
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptome analysis of Ginkgo biloba kernels.
    He B; Gu Y; Xu M; Wang J; Cao F; Xu LA
    Front Plant Sci; 2015; 6():819. PubMed ID: 26500663
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gene Expression Profiles and Flavonoid Accumulation during Salt Stress in
    Xu N; Liu S; Lu Z; Pang S; Wang L; Wang L; Li W
    Plants (Basel); 2020 Sep; 9(9):. PubMed ID: 32911855
    [No Abstract]   [Full Text] [Related]  

  • 24. Transcriptome and Metabolite Conjoint Analysis Reveals the Seed Dormancy Release Process in Callery Pear.
    Zhang J; Qian JY; Bian YH; Liu X; Wang CL
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216299
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temporal Dynamic Transcriptome Landscape Reveals Regulatory Network During the Early Differentiation of Female Strobilus Buds in
    Bai PP; Lin HY; Sun Y; Wu JJ; Gu KJ; Zhao YP
    Front Plant Sci; 2022; 13():863330. PubMed ID: 35432408
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of key regulatory genes involved in the sporophyte and gametophyte development in Ginkgo biloba ovules revealed by in situ expression analyses.
    D'Apice G; Moschin S; Nigris S; Ciarle R; Muto A; Bruno L; Baldan B
    Am J Bot; 2022 Jun; 109(6):887-898. PubMed ID: 35506584
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptome and proteome associated analysis of flavonoid metabolism in haploid Ginkgo biloba.
    Hu Y; Zhang Y; Šmarda P; Bureš P; Guo Q
    Int J Biol Macromol; 2023 Jan; 224():306-318. PubMed ID: 36257359
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptome Analysis Reveals Endogenous Hormone Changes during Spike Development in
    Li Z; Xiao W; Chen H; Zhu G; Lv F
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142373
    [No Abstract]   [Full Text] [Related]  

  • 29. Identification and characterization of long non-coding RNAs involved in embryo development of
    Jiang H; Jia Z; Liu S; Zhao B; Li W; Jin B; Wang L
    Plant Signal Behav; 2019; 14(12):1674606. PubMed ID: 31595821
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcript profiling reveals complex auxin signalling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton.
    Yang X; Zhang X; Yuan D; Jin F; Zhang Y; Xu J
    BMC Plant Biol; 2012 Jul; 12():110. PubMed ID: 22817809
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of Ginkgo biloba leaf extract on cerebral cortex amino acid levels in cerebral ischemia model rats.
    Cui Y; Wu H; Liu M; Yang H; Qin H; Liu X
    J Tradit Chin Med; 2018 Oct; 38(5):676-684. PubMed ID: 32185984
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional Characterization of the
    Zhou X; Wang L; Yan J; Ye J; Cheng S; Xu F; Wang G; Zhang W; Liao Y; Liu X
    Front Plant Sci; 2021; 12():681166. PubMed ID: 34552601
    [No Abstract]   [Full Text] [Related]  

  • 33. Full-length sequencing of ginkgo transcriptomes for an in-depth understanding of flavonoid and terpenoid trilactone biosynthesis.
    Sun S; Li Y; Chu L; Kuang X; Song J; Sun C
    Gene; 2020 Oct; 758():144961. PubMed ID: 32693148
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptional Differences in Peanut (Arachis hypogaea L.) Seeds at the Freshly Harvested, After-ripening and Newly Germinated Seed Stages: Insights into the Regulatory Networks of Seed Dormancy Release and Germination.
    Xu P; Tang G; Cui W; Chen G; Ma CL; Zhu J; Li P; Shan L; Liu Z; Wan S
    PLoS One; 2020; 15(1):e0219413. PubMed ID: 31899920
    [TBL] [Abstract][Full Text] [Related]  

  • 35. GbMYBR1 from Ginkgo biloba represses phenylpropanoid biosynthesis and trichome development in Arabidopsis.
    Su X; Xia Y; Jiang W; Shen G; Pang Y
    Planta; 2020 Sep; 252(4):68. PubMed ID: 32990805
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative transcriptome analysis revealed the cooperative regulation of sucrose and IAA on adventitious root formation in lotus (Nelumbo nucifera Gaertn).
    Libao C; Minrong Z; Zhubing H; Huiying L; Shuyan L
    BMC Genomics; 2020 Sep; 21(1):653. PubMed ID: 32967611
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization and functional analysis of a MYB gene (GbMYBFL) related to flavonoid accumulation in Ginkgo biloba.
    Zhang W; Xu F; Cheng S; Liao Y
    Genes Genomics; 2018 Jan; 40(1):49-61. PubMed ID: 29892898
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptomics of cytokinin and auxin metabolism and signaling genes during seed maturation in dormant and non-dormant wheat genotypes.
    Tuan PA; Yamasaki Y; Kanno Y; Seo M; Ayele BT
    Sci Rep; 2019 Mar; 9(1):3983. PubMed ID: 30850728
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temporospatial Flavonoids Metabolism Variation in
    Guo Y; Wang T; Fu FF; El-Kassaby YA; Wang G
    Front Genet; 2020; 11():589326. PubMed ID: 33329734
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of Key Genes during Ethylene-Induced Adventitious Root Development in Cucumber (
    Deng Y; Wang C; Zhang M; Wei L; Liao W
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.