These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 37324717)
1. A systematic overexpression approach reveals native targets to increase squalene production in Germann AT; Nakielski A; Dietsch M; Petzel T; Moser D; Triesch S; Westhoff P; Axmann IM Front Plant Sci; 2023; 14():1024981. PubMed ID: 37324717 [TBL] [Abstract][Full Text] [Related]
2. Introduction of a green algal squalene synthase enhances squalene accumulation in a strain of Pattanaik B; Englund E; Nolte N; Lindberg P Metab Eng Commun; 2020 Jun; 10():e00125. PubMed ID: 32123662 [TBL] [Abstract][Full Text] [Related]
3. Production of squalene in Synechocystis sp. PCC 6803. Englund E; Pattanaik B; Ubhayasekera SJ; Stensjö K; Bergquist J; Lindberg P PLoS One; 2014; 9(3):e90270. PubMed ID: 24625633 [TBL] [Abstract][Full Text] [Related]
4. Systematic overexpression study to find target enzymes enhancing production of terpenes in Synechocystis PCC 6803, using isoprene as a model compound. Englund E; Shabestary K; Hudson EP; Lindberg P Metab Eng; 2018 Sep; 49():164-177. PubMed ID: 30025762 [TBL] [Abstract][Full Text] [Related]
5. Combining isotopically non-stationary metabolic flux analysis with proteomics to unravel the regulation of the Calvin-Benson-Bassham cycle in Synechocystis sp. PCC 6803. Yu King Hing N; Liang F; Lindblad P; Morgan JA Metab Eng; 2019 Dec; 56():77-84. PubMed ID: 31470115 [TBL] [Abstract][Full Text] [Related]
7. Overexpression of bifunctional fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase leads to enhanced photosynthesis and global reprogramming of carbon metabolism in Synechococcus sp. PCC 7002. De Porcellinis AJ; Nørgaard H; Brey LMF; Erstad SM; Jones PR; Heazlewood JL; Sakuragi Y Metab Eng; 2018 May; 47():170-183. PubMed ID: 29510212 [TBL] [Abstract][Full Text] [Related]
8. Metabolic engineering of Rodrigues JS; Lindberg P Metab Eng Commun; 2021 Jun; 12():e00159. PubMed ID: 33489752 [TBL] [Abstract][Full Text] [Related]
9. Quantitative insight into the metabolism of isoprene-producing Synechocystis sp. PCC 6803 using steady state Nirati Y; Purushotham N; Alagesan S Photosynth Res; 2022 Nov; 154(2):195-206. PubMed ID: 36070060 [TBL] [Abstract][Full Text] [Related]
10. Mapping competitive pathways to terpenoid biosynthesis in Synechocystis sp. PCC 6803 using an antisense RNA synthetic tool. Rodrigues JS; Bourgade B; Galle KR; Lindberg P Microb Cell Fact; 2023 Feb; 22(1):35. PubMed ID: 36823631 [TBL] [Abstract][Full Text] [Related]
11. Expression of phenylalanine ammonia lyases in Synechocystis sp. PCC 6803 and subsequent improvements of sustainable production of phenylpropanoids. Kukil K; Lindberg P Microb Cell Fact; 2022 Jan; 21(1):8. PubMed ID: 35012528 [TBL] [Abstract][Full Text] [Related]
12. Metabolic Flux Analysis of the Synechocystis sp. PCC 6803 ΔnrtABCD Mutant Reveals a Mechanism for Metabolic Adaptation to Nitrogen-Limited Conditions. Nakajima T; Yoshikawa K; Toya Y; Matsuda F; Shimizu H Plant Cell Physiol; 2017 Mar; 58(3):537-545. PubMed ID: 28130420 [TBL] [Abstract][Full Text] [Related]
13. Engineered cyanobacteria with additional overexpression of selected Calvin-Benson-Bassham enzymes show further increased ethanol production. Roussou S; Albergati A; Liang F; Lindblad P Metab Eng Commun; 2021 Jun; 12():e00161. PubMed ID: 33520653 [TBL] [Abstract][Full Text] [Related]
14. Sustainable production of photosynthetic isobutanol and 3-methyl-1-butanol in the cyanobacterium Synechocystis sp. PCC 6803. Xie H; Kjellström J; Lindblad P Biotechnol Biofuels Bioprod; 2023 Sep; 16(1):134. PubMed ID: 37684613 [TBL] [Abstract][Full Text] [Related]
15. Improvement of Squalene Production from CO Choi SY; Wang JY; Kwak HS; Lee SM; Um Y; Kim Y; Sim SJ; Choi JI; Woo HM ACS Synth Biol; 2017 Jul; 6(7):1289-1295. PubMed ID: 28365988 [TBL] [Abstract][Full Text] [Related]
16. Cellular physiology controls photoautotrophic production of 1,2-propanediol from pools of CO David C; Schmid A; Bühler K Biotechnol Bioeng; 2019 Apr; 116(4):882-892. PubMed ID: 30480779 [TBL] [Abstract][Full Text] [Related]
17. Photosynthetic conversion of CO2 to farnesyl diphosphate-derived phytochemicals (amorpha-4,11-diene and squalene) by engineered cyanobacteria. Choi SY; Lee HJ; Choi J; Kim J; Sim SJ; Um Y; Kim Y; Lee TS; Keasling JD; Woo HM Biotechnol Biofuels; 2016; 9():202. PubMed ID: 27688805 [TBL] [Abstract][Full Text] [Related]
18. Metabolic engineering of Dietsch M; Behle A; Westhoff P; Axmann IM Metab Eng Commun; 2021 Dec; 13():e00178. PubMed ID: 34466381 [TBL] [Abstract][Full Text] [Related]
19. Metabolic engineering of Synechocystis sp. PCC 6803 for enhanced ethanol production based on flux balance analysis. Yoshikawa K; Toya Y; Shimizu H Bioprocess Biosyst Eng; 2017 May; 40(5):791-796. PubMed ID: 28258322 [TBL] [Abstract][Full Text] [Related]