BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

692 related articles for article (PubMed ID: 37324941)

  • 1. Emerging Role of Ferroptosis in Diabetic Kidney Disease: Molecular Mechanisms and Therapeutic Opportunities.
    Wang H; Liu D; Zheng B; Yang Y; Qiao Y; Li S; Pan S; Liu Y; Feng Q; Liu Z
    Int J Biol Sci; 2023; 19(9):2678-2694. PubMed ID: 37324941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadening horizons: the multifaceted functions of ferroptosis in kidney diseases.
    Feng Q; Yang Y; Ren K; Qiao Y; Sun Z; Pan S; Liu F; Liu Y; Huo J; Liu D; Liu Z
    Int J Biol Sci; 2023; 19(12):3726-3743. PubMed ID: 37564215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Empagliflozin attenuates the renal tubular ferroptosis in diabetic kidney disease through AMPK/NRF2 pathway.
    Lu Q; Yang L; Xiao JJ; Liu Q; Ni L; Hu JW; Yu H; Wu X; Zhang BF
    Free Radic Biol Med; 2023 Feb; 195():89-102. PubMed ID: 36581059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LncRNA H19: a novel player in the regulation of diabetic kidney disease.
    Wu Q; Huang F
    Front Endocrinol (Lausanne); 2023; 14():1238981. PubMed ID: 37964955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research progress on ferroptosis in diabetic kidney disease.
    Wu Y; Chen Y
    Front Endocrinol (Lausanne); 2022; 13():945976. PubMed ID: 36246888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. STING deficiency alleviates ferroptosis through FPN1 stabilization in diabetic kidney disease.
    Zhao QX; Yan SB; Wang F; Li XX; Shang GK; Zheng ZJ; Xiao J; Lin ZW; Li CB; Ji XP
    Biochem Pharmacol; 2024 Apr; 222():116102. PubMed ID: 38428828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of ferroptosis of renal tubular cells with total flavones of Abelmoschus manihot alleviates diabetic tubulopathy.
    Wang MZ; Cai YF; Fang QJ; Liu YL; Wang J; Chen JX; Fu Y; Wan BY; Tu Y; Wu W; Wan YG; Mu GL
    Anat Rec (Hoboken); 2023 Dec; 306(12):3199-3213. PubMed ID: 36440653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glomerular cell cross talk in diabetic kidney diseases.
    Dong R; Xu Y
    J Diabetes; 2022 Aug; 14(8):514-523. PubMed ID: 35999686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial dynamics and diabetic kidney disease: Missing pieces for the puzzle of therapeutic approaches.
    Narongkiatikhun P; Chattipakorn SC; Chattipakorn N
    J Cell Mol Med; 2022 Jan; 26(2):249-273. PubMed ID: 34889040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ferroptosis: a new strategy for Chinese herbal medicine treatment of diabetic nephropathy.
    Wei M; Liu X; Tan Z; Tian X; Li M; Wei J
    Front Endocrinol (Lausanne); 2023; 14():1188003. PubMed ID: 37361521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quercetin improves diabetic kidney disease by inhibiting ferroptosis and regulating the Nrf2 in streptozotocin-induced diabetic rats.
    Zhang L; Wang X; Chang L; Ren Y; Sui M; Fu Y; Zhang L; Hao L
    Ren Fail; 2024 Dec; 46(1):2327495. PubMed ID: 38465879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tubular injury in diabetic kidney disease: molecular mechanisms and potential therapeutic perspectives.
    Wang Y; Jin M; Cheng CK; Li Q
    Front Endocrinol (Lausanne); 2023; 14():1238927. PubMed ID: 37600689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and functional analysis of the hub Ferroptosis-Related gene EZH2 in diabetic kidney disease.
    Wang H; Wang J; Ran Q; Leng Y; Liu T; Xiong Z; Zou D; Yang W
    Int Immunopharmacol; 2024 May; 133():112138. PubMed ID: 38678670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emodin attenuates diabetic kidney disease by inhibiting ferroptosis via upregulating Nrf2 expression.
    Ji J; Tao P; Wang Q; Cui M; Cao M; Xu Y
    Aging (Albany NY); 2023 Aug; 15(15):7673-7688. PubMed ID: 37552124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aspirin mediates protection from diabetic kidney disease by inducing ferroptosis inhibition.
    Wu Z; Li D; Tian D; Liu X; Wu Z
    PLoS One; 2022; 17(12):e0279010. PubMed ID: 36516169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dapagliflozin Alleviates Diabetic Kidney Disease
    Wang YH; Chang DY; Zhao MH; Chen M
    Antioxid Redox Signal; 2024 Mar; 40(7-9):492-509. PubMed ID: 37276148
    [No Abstract]   [Full Text] [Related]  

  • 17. Novel ferroptosis gene biomarkers and immune infiltration profiles in diabetic kidney disease via bioinformatics.
    Huang Y; Yuan X
    FASEB J; 2024 Jan; 38(2):e23421. PubMed ID: 38198194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of metabolic memory on inflammation and fibrosis associated with diabetic kidney disease: an epigenetic perspective.
    Zheng W; Guo J; Liu ZS
    Clin Epigenetics; 2021 Apr; 13(1):87. PubMed ID: 33883002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SKP alleviates the ferroptosis in diabetic kidney disease through suppression of HIF-1α/HO-1 pathway based on network pharmacology analysis and experimental validation.
    Yan Y; Yuan N; Chen Y; Ma Y; Chen A; Wang F; Yan S; He Z; He J; Zhang C; Wang H; Wang M; Diao J; Xiao W
    Chin Med; 2024 Feb; 19(1):31. PubMed ID: 38403669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. tRF3-IleAAT reduced extracellular matrix synthesis in diabetic kidney disease mice by targeting ZNF281 and inhibiting ferroptosis.
    Qiao YY; Ji JL; Hou WL; Qu GT; Li SW; Li XY; Jin R; Li YF; Shi HM; Zhang AQ
    Acta Pharmacol Sin; 2024 May; 45(5):1032-1043. PubMed ID: 38286833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.