These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37325529)

  • 1. Stability and reactivity of metal nanoclusters supported on transition metal carbides.
    Prats H; Stamatakis M
    Nanoscale Adv; 2023 Jun; 5(12):3214-3224. PubMed ID: 37325529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic and molecular adsorption on transition-metal carbide (111) surfaces from density-functional theory: a trend study of surface electronic factors.
    Vojvodic A; Ruberto C; Lundqvist BI
    J Phys Condens Matter; 2010 Sep; 22(37):375504. PubMed ID: 21403200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the dissociation of molecular hydrogen by Au supported on transition metal carbides: choice of the most active support.
    Florez E; Gomez T; Rodriguez JA; Illas F
    Phys Chem Chem Phys; 2011 Apr; 13(15):6865-71. PubMed ID: 21409257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molybdenum Carbide: Controlling the Geometric and Electronic Structure of Noble Metals for the Activation of O-H and C-H Bonds.
    Deng Y; Ge Y; Xu M; Yu Q; Xiao D; Yao S; Ma D
    Acc Chem Res; 2019 Dec; 52(12):3372-3383. PubMed ID: 31411856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transition Metal Carbides as Supports for Catalytic Metal Particles: Recent Progress and Opportunities.
    Prats H; Stamatakis M
    J Phys Chem Lett; 2024 Mar; 15(12):3450-3460. PubMed ID: 38512338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of Gold on Metal Carbides: Novel Catalysts for C1 Chemistry.
    Rodriguez JA
    Front Chem; 2019; 7():875. PubMed ID: 31970150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption and diffusion of Au atoms on the (001) surface of Ti, Zr, Hf, V, Nb, Ta, and Mo carbides.
    Florez E; Viñes F; Rodriguez JA; Illas F
    J Chem Phys; 2009 Jun; 130(24):244706. PubMed ID: 19566173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen Reduction Reaction to Ammonia on Transition Metal Carbide Catalysts.
    Ellingsson V; Iqbal A; Skúlason E; Abghoui Y
    ChemSusChem; 2023 Nov; 16(22):e202300947. PubMed ID: 37702376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of noble metals on metal-carbide surfaces: novel catalysts for CO oxidation, desulfurization and hydrogenation reactions.
    Rodriguez JA; Illas F
    Phys Chem Chem Phys; 2012 Jan; 14(2):427-38. PubMed ID: 22108864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the Capabilities of Transition Metal Carbides for Carbon Capture and Utilization Technologies.
    Prats H; Pajares A; Viñes F; Ramírez de la Piscina P; Sayós R; Homs N; Illas F
    ACS Appl Mater Interfaces; 2024 Jun; 16(22):28505-28516. PubMed ID: 38785134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition-metal single atoms embedded into defective BC
    Zhou Y; Gao G; Chu W; Wang LW
    Nanoscale; 2021 Jan; 13(2):1331-1339. PubMed ID: 33410443
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Mendes PCD; Verga LG; Da Silva JLF
    Phys Chem Chem Phys; 2021 Mar; 23(10):6029-6041. PubMed ID: 33683269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advances in Carbon Dioxide Adsorption, Activation and Hydrogenation to Methanol using Transition Metal Carbides.
    Ranjan P; Saptal VB; Bera JK
    ChemSusChem; 2022 Nov; 15(21):e202201183. PubMed ID: 36036640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocatalytic Decomposition of an Azo Dye Using Transition-Metal-Doped Tungsten and Molybdenum Carbides.
    Mabuea BP; Swart HC; Erasmus E
    ACS Omega; 2022 Jul; 7(27):23401-23411. PubMed ID: 35847302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing descriptors for CO
    Ray K; Bhardwaj R; Singh B; Deo G
    Phys Chem Chem Phys; 2018 Jun; 20(23):15939-15950. PubMed ID: 29850682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing Activity and Reducing Cost for Electrochemical Reduction of CO
    Wang J; Kattel S; Hawxhurst CJ; Lee JH; Tackett BM; Chang K; Rui N; Liu CJ; Chen JG
    Angew Chem Int Ed Engl; 2019 May; 58(19):6271-6275. PubMed ID: 30884064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A General Method for Constructing Two-Dimensional Layered Mesoporous Mono- and Binary-Transition-Metal Nitride/Graphene as an Ultra-Efficient Support to Enhance Its Catalytic Activity and Durability for Electrocatalytic Application.
    Liu B; Huo L; Si R; Liu J; Zhang J
    ACS Appl Mater Interfaces; 2016 Jul; 8(29):18770-87. PubMed ID: 27356463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering non-sintered, metal-terminated tungsten carbide nanoparticles for catalysis.
    Hunt ST; Nimmanwudipong T; Román-Leshkov Y
    Angew Chem Int Ed Engl; 2014 May; 53(20):5131-6. PubMed ID: 24700729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.