BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 37325549)

  • 1. The 3D chromatin landscape of rhabdomyosarcoma.
    Wang M; Sreenivas P; Sunkel BD; Wang L; Ignatius M; Stanton BZ
    NAR Cancer; 2023 Sep; 5(3):zcad028. PubMed ID: 37325549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship of DNA methylation to mutational changes and transcriptional organization in fusion-positive and fusion-negative rhabdomyosarcoma.
    Sun W; Chatterjee B; Shern JF; Patidar R; Song Y; Wang Y; Walker RL; Pawel BR; Linardic CM; Houghton P; Hewitt SM; Edelman DC; Khan J; Meltzer PS; Barr FG
    Int J Cancer; 2019 Jun; 144(11):2707-2717. PubMed ID: 30565669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PAX3-FOXO1 drives miR-486-5p and represses miR-221 contributing to pathogenesis of alveolar rhabdomyosarcoma.
    Hanna JA; Garcia MR; Lardennois A; Leavey PJ; Maglic D; Fagnan A; Go JC; Roach J; Wang YD; Finkelstein D; Hatley ME
    Oncogene; 2018 Apr; 37(15):1991-2007. PubMed ID: 29367756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KDM3A/Ets1 epigenetic axis contributes to PAX3/FOXO1-driven and independent disease-promoting gene expression in fusion-positive Rhabdomyosarcoma.
    Sobral LM; Hicks HM; Parrish JK; McCann TS; Hsieh J; Goodspeed A; Costello JC; Black JC; Jedlicka P
    Mol Oncol; 2020 Oct; 14(10):2471-2486. PubMed ID: 32697014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oncogenic role of HMGA2 in fusion-negative rhabdomyosarcoma cells.
    Ouchi K; Miyachi M; Yagyu S; Kikuchi K; Kuwahara Y; Tsuchiya K; Iehara T; Hosoi H
    Cancer Cell Int; 2020; 20():192. PubMed ID: 32489328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spermine oxidase induces DNA damage and sensitizes fusion negative rhabdomyosarcoma cells to irradiation.
    Perrone C; Pomella S; Cassandri M; Pezzella M; Giuliani S; Gasperi T; Porrazzo A; Alisi A; Pastore A; Codenotti S; Fanzani A; Barillari G; Conti LA; De Angelis B; Quintarelli C; Mariottini P; Locatelli F; Marampon F; Rota R; Cervelli M
    Front Cell Dev Biol; 2023; 11():1061570. PubMed ID: 36755974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and targeting of a HES1-YAP1-CDKN1C functional interaction in fusion-negative rhabdomyosarcoma.
    Kovach AR; Oristian KM; Kirsch DG; Bentley RC; Cheng C; Chen X; Chen PH; Chi JA; Linardic CM
    Mol Oncol; 2022 Oct; 16(20):3587-3605. PubMed ID: 36037042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfaceome Profiling of Cell Lines and Patient-Derived Xenografts Confirm FGFR4, NCAM1, CD276, and Highlight AGRL2, JAM3, and L1CAM as Surface Targets for Rhabdomyosarcoma.
    Timpanaro A; Piccand C; Uldry AC; Bode PK; Dzhumashev D; Sala R; Heller M; Rössler J; Bernasconi M
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BAF complexes drive proliferation and block myogenic differentiation in fusion-positive rhabdomyosarcoma.
    Laubscher D; Gryder BE; Sunkel BD; Andresson T; Wachtel M; Das S; Roschitzki B; Wolski W; Wu XS; Chou HC; Song YK; Wang C; Wei JS; Wang M; Wen X; Ngo QA; Marques JG; Vakoc CR; Schäfer BW; Stanton BZ; Khan J
    Nat Commun; 2021 Nov; 12(1):6924. PubMed ID: 34836971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identify potential driver genes for PAX-FOXO1 fusion-negative rhabdomyosarcoma through frequent gene co-expression network mining.
    Zhan X; Liu Y; Jannu AJ; Huang S; Ye B; Wei W; Pandya PH; Ye X; Pollok KE; Renbarger JL; Huang K; Zhang J
    Front Oncol; 2023; 13():1080989. PubMed ID: 36793601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MS-275 (Entinostat) Promotes Radio-Sensitivity in PAX3-FOXO1 Rhabdomyosarcoma Cells.
    Cassandri M; Pomella S; Rossetti A; Petragnano F; Milazzo L; Vulcano F; Camero S; Codenotti S; Cicchetti F; Maggio R; Festuccia C; Gravina GL; Fanzani A; Megiorni F; Catanoso M; Marchese C; Tombolini V; Locatelli F; Rota R; Marampon F
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PAX7 is a required target for microRNA-206-induced differentiation of fusion-negative rhabdomyosarcoma.
    Hanna JA; Garcia MR; Go JC; Finkelstein D; Kodali K; Pagala V; Wang X; Peng J; Hatley ME
    Cell Death Dis; 2016 Jun; 7(6):e2256. PubMed ID: 27277678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MET Inhibition Sensitizes Rhabdomyosarcoma Cells to NOTCH Signaling Suppression.
    Perrone C; Pomella S; Cassandri M; Pezzella M; Milano GM; Colletti M; Cossetti C; Pericoli G; Di Giannatale A; de Billy E; Vinci M; Petrini S; Marampon F; Quintarelli C; Taulli R; Roma J; Gallego S; Camero S; Mariottini P; Cervelli M; Maestro R; Miele L; De Angelis B; Locatelli F; Rota R
    Front Oncol; 2022; 12():835642. PubMed ID: 35574376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TWIST2-mediated chromatin remodeling promotes fusion-negative rhabdomyosarcoma.
    Shah AM; Guo L; Morales MG; Jaichander P; Chen K; Huang H; Cano Hernandez K; Xu L; Bassel-Duby R; Olson EN; Liu N
    Sci Adv; 2023 Apr; 9(17):eade8184. PubMed ID: 37115930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between SNAI2 and MYOD enhances oncogenesis and suppresses differentiation in Fusion Negative Rhabdomyosarcoma.
    Pomella S; Sreenivas P; Gryder BE; Wang L; Milewski D; Cassandri M; Baxi K; Hensch NR; Carcarino E; Song Y; Chou HC; Yohe ME; Stanton BZ; Amadio B; Caruana I; De Stefanis C; De Vito R; Locatelli F; Chen Y; Chen EY; Houghton P; Khan J; Rota R; Ignatius MS
    Nat Commun; 2021 Jan; 12(1):192. PubMed ID: 33420019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CDK4 Amplification Reduces Sensitivity to CDK4/6 Inhibition in Fusion-Positive Rhabdomyosarcoma.
    Olanich ME; Sun W; Hewitt SM; Abdullaev Z; Pack SD; Barr FG
    Clin Cancer Res; 2015 Nov; 21(21):4947-59. PubMed ID: 25810375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KDM3A/Ets1/MCAM axis promotes growth and metastatic properties in Rhabdomyosarcoma.
    Sobral LM; Sechler M; Parrish JK; McCann TS; Jones KL; Black JC; Jedlicka P
    Genes Cancer; 2020; 11(1-2):53-65. PubMed ID: 32577157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishment of 6 pediatric rhabdomyosarcoma patient's derived xenograft models closely recapitulating patients' tumor characteristics.
    Gasparini P; Casanova M; Centonze G; Borzi C; Bergamaschi L; Collini P; Testi A; Chiaravalli S; Massimino M; Sozzi G; Ferrari A; Moro M
    Tumori; 2023 Jun; 109(3):314-323. PubMed ID: 36114629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequential genomic analysis using a multisample/multiplatform approach to better define rhabdomyosarcoma progression and relapse.
    de Traux de Wardin H; Dermawan JK; Merlin MS; Wexler LH; Orbach D; Vanoli F; Schleiermacher G; Geoerger B; Ballet S; Guillemot D; Frouin E; Cyrille S; Delattre O; Pierron G; Antonescu CR
    NPJ Precis Oncol; 2023 Sep; 7(1):96. PubMed ID: 37730754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional genome landscape comprehensively reveals patterns of spatial gene regulation in papillary and anaplastic thyroid cancers: a study using representative cell lines for each cancer type.
    Zhang L; Xu M; Zhang W; Zhu C; Cui Z; Fu H; Ma Y; Huang S; Cui J; Liang S; Huang L; Wang H
    Cell Mol Biol Lett; 2023 Jan; 28(1):1. PubMed ID: 36609218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.