BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37325720)

  • 1. Intra- and interspecific variation in spectral properties of dominant
    Salko SS; Juola J; Burdun I; Vasander H; Rautiainen M
    Ecol Evol; 2023 Jun; 13(6):e10197. PubMed ID: 37325720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Will climate change cause the global peatland to expand or contract? Evidence from the habitat shift pattern of Sphagnum mosses.
    Ma XY; Xu H; Cao ZY; Shu L; Zhu RL
    Glob Chang Biol; 2022 Nov; 28(21):6419-6432. PubMed ID: 35900846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sphagnum mosses, the impact of disturbances and anthropogenic management actions on their ecological role in CO
    Pacheco-Cancino PA; Carrillo-López RF; Sepulveda-Jauregui A; Somos-Valenzuela MA
    Glob Chang Biol; 2024 Jan; 30(1):e16972. PubMed ID: 37882506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photosynthetic traits of Sphagnum and feather moss species in undrained, drained and rewetted boreal spruce swamp forests.
    Kangas L; Maanavilja L; Hájek T; Juurola E; Chimner RA; Mehtätalo L; Tuittila ES
    Ecol Evol; 2014 Feb; 4(4):381-96. PubMed ID: 24634723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A spectral analysis of common boreal ground lichen species.
    Kuusinen N; Juola J; Karki B; Stenroos S; Rautiainen M
    Remote Sens Environ; 2020 Sep; 247():111955. PubMed ID: 32943799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of Sphagnum mosses in the methane cycling of a boreal mire.
    Larmola T; Tuittila ES; Tiirola M; Nykänen H; Martikainen PJ; Yrjälä K; Tuomivirta T; Fritze H
    Ecology; 2010 Aug; 91(8):2356-65. PubMed ID: 20836457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate drivers alter nitrogen availability in surface peat and decouple N
    Petro C; Carrell AA; Wilson RM; Duchesneau K; Noble-Kuchera S; Song T; Iversen CM; Childs J; Schwaner G; Chanton JP; Norby RJ; Hanson PJ; Glass JB; Weston DJ; Kostka JE
    Glob Chang Biol; 2023 Jun; 29(11):3159-3176. PubMed ID: 36999440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant functional group controls litter decomposition rate and its temperature sensitivity: An incubation experiment on litters from a boreal peatland in northeast China.
    Mao R; Zhang X; Song C; Wang X; Finnegan PM
    Sci Total Environ; 2018 Jun; 626():678-683. PubMed ID: 29898554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vascular plants regulate responses of boreal peatland Sphagnum to climate warming and nitrogen addition.
    Le TB; Wu J; Gong Y
    Sci Total Environ; 2022 May; 819():152077. PubMed ID: 34856288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of climate warming on Sphagnum photosynthesis in peatlands depend on peat moisture and species-specific anatomical traits.
    Jassey VEJ; Signarbieux C
    Glob Chang Biol; 2019 Nov; 25(11):3859-3870. PubMed ID: 31502398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Consistent centennial-scale change in European sub-Arctic peatland vegetation toward Sphagnum dominance-Implications for carbon sink capacity.
    Piilo SR; Väliranta MM; Amesbury MJ; Aquino-López MA; Charman DJ; Gallego-Sala A; Garneau M; Koroleva N; Kärppä M; Laine AM; Sannel ABK; Tuittila ES; Zhang H
    Glob Chang Biol; 2023 Mar; 29(6):1530-1544. PubMed ID: 36495084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The High-Elevation Peatlands of the Northern Andes, Colombia.
    Benavides JC; Vitt DH; Cooper DJ
    Plants (Basel); 2023 Feb; 12(4):. PubMed ID: 36840306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ozone effects on Sphagnum mosses, carbon dioxide exchange and methane emission in boreal peatland microcosms.
    Niemi R; Martikainen PJ; Silvola J; Holopainen T
    Sci Total Environ; 2002 Apr; 289(1-3):1-12. PubMed ID: 12049387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A spectral analysis of stem bark for boreal and temperate tree species.
    Juola J; Hovi A; Rautiainen M
    Ecol Evol; 2022 Mar; 12(3):e8718. PubMed ID: 35342560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of niche preference in Sphagnum peat mosses.
    Johnson MG; Granath G; Tahvanainen T; Pouliot R; Stenøien HK; Rochefort L; Rydin H; Shaw AJ
    Evolution; 2015 Jan; 69(1):90-103. PubMed ID: 25319183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Widespread recent ecosystem state shifts in high-latitude peatlands of northeastern Canada and implications for carbon sequestration.
    Magnan G; Sanderson NK; Piilo S; Pratte S; Väliranta M; van Bellen S; Zhang H; Garneau M
    Glob Chang Biol; 2022 Mar; 28(5):1919-1934. PubMed ID: 34882914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peatland-fire interactions: A review of wildland fire feedbacks and interactions in Canadian boreal peatlands.
    Nelson K; Thompson D; Hopkinson C; Petrone R; Chasmer L
    Sci Total Environ; 2021 May; 769():145212. PubMed ID: 33486170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decreased carbon accumulation feedback driven by climate-induced drying of two southern boreal bogs over recent centuries.
    Zhang H; Väliranta M; Piilo S; Amesbury MJ; Aquino-López MA; Roland TP; Salminen-Paatero S; Paatero J; Lohila A; Tuittila ES
    Glob Chang Biol; 2020 Apr; 26(4):2435-2448. PubMed ID: 31961026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural selection on a carbon cycling trait drives ecosystem engineering by
    Piatkowski BT; Yavitt JB; Turetsky MR; Shaw AJ
    Proc Biol Sci; 2021 Aug; 288(1957):20210609. PubMed ID: 34403639
    [No Abstract]   [Full Text] [Related]  

  • 20. Structure and Functions of Endophytic Bacterial Communities Associated with Sphagnum Mosses and Their Drivers in Two Different Nutrient Types of Peatlands.
    Wang Y; Xue D; Chen X; Qiu Q; Chen H
    Microb Ecol; 2024 Feb; 87(1):47. PubMed ID: 38407642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.