BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37326060)

  • 1. [Type II CRISPR-Cas System Nucleases: A Pipeline for Prediction and In Vitro Characterization].
    Vasileva AA; Aliukas SA; Selkova PA; Arseniev AN; Chernova VE; Musharova OS; Klimuk EI; Khodorkovskii MA; Severinov KV
    Mol Biol (Mosk); 2023; 57(3):546-560. PubMed ID: 37326060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A pipeline for characterization of novel Cas9 orthologs.
    Karvelis T; Young JK; Siksnys V
    Methods Enzymol; 2019; 616():219-240. PubMed ID: 30691644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PpCas9 from Pasteurella pneumotropica - a compact Type II-C Cas9 ortholog active in human cells.
    Fedorova I; Vasileva A; Selkova P; Abramova M; Arseniev A; Pobegalov G; Kazalov M; Musharova O; Goryanin I; Artamonova D; Zyubko T; Shmakov S; Artamonova T; Khodorkovskii M; Severinov K
    Nucleic Acids Res; 2020 Dec; 48(21):12297-12309. PubMed ID: 33152077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programming PAM antennae for efficient CRISPR-Cas9 DNA editing.
    Wang F; Hao Y; Li Q; Li J; Zhang H; Zhang X; Wang L; Bustamante C; Fan C
    Sci Adv; 2020 May; 6(19):eaay9948. PubMed ID: 32494703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A catalogue of biochemically diverse CRISPR-Cas9 orthologs.
    Gasiunas G; Young JK; Karvelis T; Kazlauskas D; Urbaitis T; Jasnauskaite M; Grusyte MM; Paulraj S; Wang PH; Hou Z; Dooley SK; Cigan M; Alarcon C; Chilcoat ND; Bigelyte G; Curcuru JL; Mabuchi M; Sun Z; Fuchs RT; Schildkraut E; Weigele PR; Jack WE; Robb GB; Venclovas Č; Siksnys V
    Nat Commun; 2020 Nov; 11(1):5512. PubMed ID: 33139742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated identification of sequence-tailored Cas9 proteins using massive metagenomic data.
    Ciciani M; Demozzi M; Pedrazzoli E; Visentin E; Pezzè L; Signorini LF; Blanco-Miguez A; Zolfo M; Asnicar F; Casini A; Cereseto A; Segata N
    Nat Commun; 2022 Oct; 13(1):6474. PubMed ID: 36309502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-Responsive Competitive Inhibition of CRISPR-Cas9.
    Jiang F; Liu JJ; Osuna BA; Xu M; Berry JD; Rauch BJ; Nogales E; Bondy-Denomy J; Doudna JA
    Mol Cell; 2019 Feb; 73(3):601-610.e5. PubMed ID: 30595438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of CoCas9 nuclease from
    Vasileva A; Selkova P; Arseniev A; Abramova M; Shcheglova N; Musharova O; Mizgirev I; Artamonova T; Khodorkovskii M; Severinov K; Fedorova I
    RNA Biol; 2023 Jan; 20(1):750-759. PubMed ID: 37743659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery and Characterization of Novel Type V Cas12f Nucleases with Diverse Protospacer Adjacent Motif Preferences.
    Sharrar A; Arake de Tacca L; Collingwood T; Meacham Z; Rabuka D; Staples-Ager J; Schelle M
    CRISPR J; 2023 Aug; 6(4):350-358. PubMed ID: 37267210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR technologies and the search for the PAM-free nuclease.
    Collias D; Beisel CL
    Nat Commun; 2021 Jan; 12(1):555. PubMed ID: 33483498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Parallel Profiling of Cas9 Variant Specificity.
    Schmid-Burgk JL; Gao L; Li D; Gardner Z; Strecker J; Lash B; Zhang F
    Mol Cell; 2020 May; 78(4):794-800.e8. PubMed ID: 32187529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SpRY Cas9 Can Utilize a Variety of Protospacer Adjacent Motif Site Sequences To Edit the Candida albicans Genome.
    Evans BA; Bernstein DA
    mSphere; 2021 May; 6(3):. PubMed ID: 34011687
    [No Abstract]   [Full Text] [Related]  

  • 14. Novel and Engineered Type II CRISPR Systems from Uncultivated Microbes with Broad Genome Editing Capability.
    Alexander LM; Aliaga Goltsman DS; Liu J; Lin JL; Temoche-Diaz MM; Laperriere SM; Neerincx A; Bednarski C; Knyphausen P; Cohnen A; Albers J; Gonzalez-Osorio L; Fregoso Ocampo R; Oki J; Devoto AE; Castelle CJ; Lamothe RC; Cost GJ; Butterfield CN; Thomas BC; Brown CT
    CRISPR J; 2023 Jun; 6(3):261-277. PubMed ID: 37272861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR RNA-Dependent Binding and Cleavage of Endogenous RNAs by the Campylobacter jejuni Cas9.
    Dugar G; Leenay RT; Eisenbart SK; Bischler T; Aul BU; Beisel CL; Sharma CM
    Mol Cell; 2018 Mar; 69(5):893-905.e7. PubMed ID: 29499139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmable RNA Cleavage and Recognition by a Natural CRISPR-Cas9 System from Neisseria meningitidis.
    Rousseau BA; Hou Z; Gramelspacher MJ; Zhang Y
    Mol Cell; 2018 Mar; 69(5):906-914.e4. PubMed ID: 29456189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potent Cas9 Inhibition in Bacterial and Human Cells by AcrIIC4 and AcrIIC5 Anti-CRISPR Proteins.
    Lee J; Mir A; Edraki A; Garcia B; Amrani N; Lou HE; Gainetdinov I; Pawluk A; Ibraheim R; Gao XD; Liu P; Davidson AR; Maxwell KL; Sontheimer EJ
    mBio; 2018 Dec; 9(6):. PubMed ID: 30514786
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Yourik P; Fuchs RT; Mabuchi M; Curcuru JL; Robb GB
    RNA; 2019 Jan; 25(1):35-44. PubMed ID: 30348755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome Editing in Zebrafish Using High-Fidelity Cas9 Nucleases: Choosing the Right Nuclease for the Task.
    Prykhozhij SV; Cordeiro-Santanach A; Caceres L; Berman JN
    Methods Mol Biol; 2020; 2115():385-405. PubMed ID: 32006412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SpCas9- and LbCas12a-Mediated DNA Editing Produce Different Gene Knockout Outcomes in Zebrafish Embryos.
    Meshalkina DA; Glushchenko AS; Kysil EV; Mizgirev IV; Frolov A
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32635161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.