These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 37326292)

  • 1. The effects of crank power and cadence on muscle fascicle shortening velocity, muscle activation and joint-specific power during cycling.
    Riveros-Matthey CD; Carroll TJ; Lichtwark GA; Connick MJ
    J Exp Biol; 2023 Jul; 226(13):. PubMed ID: 37326292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effect of Cadence on the Mechanics and Energetics of Constant Power Cycling.
    Brennan SF; Cresswell AG; Farris DJ; Lichtwark GA
    Med Sci Sports Exerc; 2019 May; 51(5):941-950. PubMed ID: 30531486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of muscle-tendon unit vs. fascicle analyses on vastus lateralis force-generating capacity during constant power output cycling with variable cadence.
    Brennan SF; Cresswell AG; Farris DJ; Lichtwark GA
    J Appl Physiol (1985); 2018 Apr; 124(4):993-1002. PubMed ID: 29357487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle activation during cycling at different cadences: effect of maximal strength capacity.
    Bieuzen F; Lepers R; Vercruyssen F; Hausswirth C; Brisswalter J
    J Electromyogr Kinesiol; 2007 Dec; 17(6):731-8. PubMed ID: 16996277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Torque, power and muscle activation of eccentric and concentric isokinetic cycling.
    Green DJ; Thomas K; Ross EZ; Green SC; Pringle JSM; Howatson G
    J Electromyogr Kinesiol; 2018 Jun; 40():56-63. PubMed ID: 29631117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Cadence on Physiological and Perceptual Responses during Eccentric Cycling at Different Power Outputs.
    Mater A; Boly A; Assadi H; Martin A; Lepers R
    Med Sci Sports Exerc; 2023 Jun; 55(6):1105-1113. PubMed ID: 36719652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo operational fascicle lengths of vastus lateralis during sub-maximal and maximal cycling.
    Austin N; Nilwik R; Herzog W
    J Biomech; 2010 Aug; 43(12):2394-9. PubMed ID: 20452597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasound and surface electromyography analyses reveal an intensity dependent active stretch-shortening cycle of the vastus lateralis muscle during ergometer rowing.
    Held S; Raiteri B; Rappelt L; Hahn D; Donath L
    Eur J Sport Sci; 2023 Sep; 23(9):1940-1949. PubMed ID: 36043353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygenation, local muscle oxygen consumption and joint specific power in cycling: the effect of cadence at a constant external work rate.
    Skovereng K; Ettema G; van Beekvelt MC
    Eur J Appl Physiol; 2016 Jun; 116(6):1207-17. PubMed ID: 27126859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of cadence on timing of muscle activation and mechanical output in cycling: on the activation dynamics hypothesis.
    McGhie D; Ettema G
    J Electromyogr Kinesiol; 2011 Feb; 21(1):18-24. PubMed ID: 20594872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors contributing to lower metabolic demand of eccentric compared with concentric cycling.
    Peñailillo L; Blazevich AJ; Nosaka K
    J Appl Physiol (1985); 2017 Oct; 123(4):884-893. PubMed ID: 28663378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of applied cadence in repeated sprint cycling on muscle characteristics.
    Klich S; Michalik K; Pietraszewski B; Hansen EA; Madeleine P; Kawczyński A
    Eur J Appl Physiol; 2024 May; 124(5):1609-1620. PubMed ID: 38175273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle fascicle behavior during eccentric cycling and its relation to muscle soreness.
    Peñailillo L; Blazevich AJ; Nosaka K
    Med Sci Sports Exerc; 2015 Apr; 47(4):708-17. PubMed ID: 25116087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cadence Modulation during Eccentric Cycling Affects Perception of Effort But Not Neuromuscular Alterations.
    Mater A; Boly A; Martin A; Lepers R
    Med Sci Sports Exerc; 2024 May; 56(5):893-901. PubMed ID: 38181211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related differences in vastus lateralis fascicle behavior during fast accelerative leg-extension movements.
    Van Roie E; Van Driessche S; Delecluse C; Vanwanseele B
    Scand J Med Sci Sports; 2020 Oct; 30(10):1878-1887. PubMed ID: 32564402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle fascicle shortening behaviour of vastus lateralis during a maximal force-velocity test.
    Hauraix H; Dorel S; Rabita G; Guilhem G; Nordez A
    Eur J Appl Physiol; 2017 Feb; 117(2):289-299. PubMed ID: 28044199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of cycling cadence on neuromuscular activity of the knee extensors in humans.
    Sarre G; Lepers R; Maffiuletti N; Millet G; Martin A
    Eur J Appl Physiol; 2003 Jan; 88(4-5):476-9. PubMed ID: 12527981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Mechanics of Seated and Nonseated Cycling at Very-High-Power Output: A Joint-Level Analysis.
    Wilkinson RD; Lichtwark GA; Cresswell AG
    Med Sci Sports Exerc; 2020 Jul; 52(7):1585-1594. PubMed ID: 31996561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo vastus lateralis force-velocity relationship at the fascicle and muscle tendon unit level.
    Fontana Hde B; Roesler H; Herzog W
    J Electromyogr Kinesiol; 2014 Dec; 24(6):934-40. PubMed ID: 25130178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cadence, power, and muscle activation in cycle ergometry.
    MacIntosh BR; Neptune RR; Horton JF
    Med Sci Sports Exerc; 2000 Jul; 32(7):1281-7. PubMed ID: 10912894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.