These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 37326292)
41. How changing the inversion/eversion foot angle affects the nondriving intersegmental knee moments and the relative activation of the vastii muscles in cycling. Gregersen CS; Hull ML; Hakansson NA J Biomech Eng; 2006 Jun; 128(3):391-8. PubMed ID: 16706588 [TBL] [Abstract][Full Text] [Related]
42. In vivo vastus lateralis fascicle excursion during speed skating imitation. Yu B; Herzog W J Biomech; 2023 Nov; 160():111814. PubMed ID: 37832489 [TBL] [Abstract][Full Text] [Related]
43. Fascicle length change of the human tibialis anterior and vastus lateralis during walking. Chleboun GS; Busic AB; Graham KK; Stuckey HA J Orthop Sports Phys Ther; 2007 Jul; 37(7):372-9. PubMed ID: 17710906 [TBL] [Abstract][Full Text] [Related]
44. Joint specific power production in cycling: The effect of cadence and intensity. Aasvold LO; Ettema G; Skovereng K PLoS One; 2019; 14(2):e0212781. PubMed ID: 30794700 [TBL] [Abstract][Full Text] [Related]
45. Plantar flexor muscles of kangaroo rats (Dipodomys deserti) shorten at a velocity to produce optimal power during jumping. Schwaner MJ; Lin DC; McGowan CP J Exp Biol; 2021 Dec; 224(24):. PubMed ID: 34870703 [TBL] [Abstract][Full Text] [Related]
46. Muscle coordination limits efficiency and power output of human limb movement under a wide range of mechanical demands. Blake OM; Wakeling JM J Neurophysiol; 2015 Dec; 114(6):3283-95. PubMed ID: 26445873 [TBL] [Abstract][Full Text] [Related]
47. Gastrocnemius and soleus muscle length, velocity, and EMG responses to changes in pedalling cadence. Sanderson DJ; Martin PE; Honeyman G; Keefer J J Electromyogr Kinesiol; 2006 Dec; 16(6):642-9. PubMed ID: 16377214 [TBL] [Abstract][Full Text] [Related]
48. Lower-limb muscle function is influenced by changing mechanical demands in cycling. Lai AKM; Dick TJM; Brown NAT; Biewener AA; Wakeling JM J Exp Biol; 2021 Feb; 224(Pt 3):. PubMed ID: 33376144 [TBL] [Abstract][Full Text] [Related]
49. Interactions between fascicles and tendinous tissues in gastrocnemius medialis and vastus lateralis during drop landing. Hollville E; Nordez A; Guilhem G; Lecompte J; Rabita G Scand J Med Sci Sports; 2019 Jan; 29(1):55-70. PubMed ID: 30242912 [TBL] [Abstract][Full Text] [Related]
50. Behaviour of vastus lateralis muscle-tendon during high intensity SSC exercises in vivo. Ishikawa M; Finni T; Komi PV Acta Physiol Scand; 2003 Jul; 178(3):205-13. PubMed ID: 12823178 [TBL] [Abstract][Full Text] [Related]
51. Modifications in activation of lower limb muscles as a function of initial foot position in cycling. Padulo J; Powell DW; Ardigò LP; Viggiano D J Electromyogr Kinesiol; 2015 Aug; 25(4):648-52. PubMed ID: 25921852 [TBL] [Abstract][Full Text] [Related]
52. During Cycling What Limits Maximum Mechanical Power Output at Cadences above 120 rpm? Hodson-Tole EF; Blake OM; Wakeling JM Med Sci Sports Exerc; 2020 Jan; 52(1):214-224. PubMed ID: 31389907 [TBL] [Abstract][Full Text] [Related]
53. The combined effect of cycling cadence and crank resistance on hamstrings and quadriceps muscle activities during cycling. Katona P; Pilissy T; Tihanyi A; Laczkó J Acta Physiol Hung; 2014 Dec; 101(4):505-16. PubMed ID: 25532958 [TBL] [Abstract][Full Text] [Related]
54. A theoretical analysis of an optimal chainring shape to maximize crank power during isokinetic pedaling. Rankin JW; Neptune RR J Biomech; 2008; 41(7):1494-502. PubMed ID: 18395213 [TBL] [Abstract][Full Text] [Related]
55. Power production strategy during steady-state cycling is cadence dependent. Yamaguchi Y; Otsuka M; Wada N; Nishiyama T J Biomech; 2023 Sep; 158():111772. PubMed ID: 37643551 [TBL] [Abstract][Full Text] [Related]
56. Comparison of force-velocity relationships of vastus lateralis muscle in isokinetic and in stretch-shortening cycle exercises. Finni T; Ikegawa S; Lepola V; Komi PV Acta Physiol Scand; 2003 Apr; 177(4):483-91. PubMed ID: 12648166 [TBL] [Abstract][Full Text] [Related]
57. Effect of power, pedal rate, and force on average muscle fiber conduction velocity during cycling. Farina D; Macaluso A; Ferguson RA; De Vito G J Appl Physiol (1985); 2004 Dec; 97(6):2035-41. PubMed ID: 15286050 [TBL] [Abstract][Full Text] [Related]
58. Lower extremity muscle activities during cycling are influenced by load and frequency. Baum BS; Li L J Electromyogr Kinesiol; 2003 Apr; 13(2):181-90. PubMed ID: 12586523 [TBL] [Abstract][Full Text] [Related]
59. The Effect of Cadence on Shank Muscle Oxygen Consumption and Deoxygenation in Relation to Joint Specific Power and Cycling Kinematics. Skovereng K; Ettema G; van Beekvelt M PLoS One; 2017; 12(1):e0169573. PubMed ID: 28060894 [TBL] [Abstract][Full Text] [Related]
60. Effect of crank length on biomechanical parameters and muscle activity during standing cycling. Park S; Roh J; Hyeong J; Kim S J Sports Sci; 2022 Jan; 40(2):185-194. PubMed ID: 34581253 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]