These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37326345)

  • 21. Ultrasensitive determination of thrombin by using an electrode modified with WSe
    Wang YH; Xia H; Huang KJ; Wu X; Ma YY; Deng R; Lu YF; Han ZW
    Mikrochim Acta; 2018 Oct; 185(11):502. PubMed ID: 30302569
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrochemical impedance spectroscopy for study of aptamer-thrombin interfacial interactions.
    Li X; Shen L; Zhang D; Qi H; Gao Q; Ma F; Zhang C
    Biosens Bioelectron; 2008 Jun; 23(11):1624-30. PubMed ID: 18339536
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A SERS-LFA biosensor combined with aptamer recognition for simultaneous detection of thrombin and PDGF-BB in prostate cancer plasma.
    Cao X; Song Q; Sun Y; Mao Y; Lu W; Li L
    Nanotechnology; 2021 Aug; 32(44):. PubMed ID: 34298537
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrochemiluminescence biosensor for the assay of small molecule and protein based on bifunctional aptamer and chemiluminescent functionalized gold nanoparticles.
    Chai Y; Tian D; Cui H
    Anal Chim Acta; 2012 Feb; 715():86-92. PubMed ID: 22244171
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stimulus-response click chemistry based aptamer-functionalized mesoporous silica nanoparticles for fluorescence detection of thrombin.
    Chen Z; Sun M; Luo F; Xu K; Lin Z; Zhang L
    Talanta; 2018 Feb; 178():563-568. PubMed ID: 29136862
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visual detection of thrombin using a strip biosensor through aptamer-cleavage reaction with enzyme catalytic amplification.
    Qin C; Wen W; Zhang X; Gu H; Wang S
    Analyst; 2015 Nov; 140(22):7710-7. PubMed ID: 26451394
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advances in Electrochemical and Acoustic Aptamer-Based Biosensors and Immunosensors in Diagnostics of Leukemia.
    Hianik T
    Biosensors (Basel); 2021 May; 11(6):. PubMed ID: 34073054
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DNA aptamer-based QDs electrochemiluminescence biosensor for the detection of thrombin.
    Huang H; Zhu JJ
    Biosens Bioelectron; 2009 Dec; 25(4):927-30. PubMed ID: 19747817
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aptamers based electrochemical biosensor for protein detection using carbon nanotubes platforms.
    Kara P; de la Escosura-Muñiz A; Maltez-da Costa M; Guix M; Ozsoz M; Merkoçi A
    Biosens Bioelectron; 2010 Dec; 26(4):1715-8. PubMed ID: 20729068
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbon nanotube-enhanced electrochemical aptasensor for the detection of thrombin.
    Liu X; Li Y; Zheng J; Zhang J; Sheng Q
    Talanta; 2010 Jun; 81(4-5):1619-24. PubMed ID: 20441948
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aptamer-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for protein analysis.
    Xu H; Mao X; Zeng Q; Wang S; Kawde AN; Liu G
    Anal Chem; 2009 Jan; 81(2):669-75. PubMed ID: 19072289
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aptamer-based SERRS sensor for thrombin detection.
    Cho H; Baker BR; Wachsmann-Hogiu S; Pagba CV; Laurence TA; Lane SM; Lee LP; Tok JB
    Nano Lett; 2008 Dec; 8(12):4386-90. PubMed ID: 19367849
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma.
    Wang Y; Bao L; Liu Z; Pang DW
    Anal Chem; 2011 Nov; 83(21):8130-7. PubMed ID: 21923110
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aptameric sensors based on structural change for diagnosis.
    Abe K; Ogasawara D; Yoshida W; Sode K; Ikebukuro K
    Faraday Discuss; 2011; 149():93-105; discussion 137-57. PubMed ID: 21413176
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aptamer/target binding-induced triple helix forming for signal-on electrochemical biosensing.
    Mao Y; Liu J; He D; He X; Wang K; Shi H; Wen L
    Talanta; 2015 Oct; 143():381-387. PubMed ID: 26078174
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Capture-SELEX: Selection Strategy, Aptamer Identification, and Biosensing Application.
    Lam SY; Lau HL; Kwok CK
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551109
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An aptamer-based assay for thrombin via structure switch based on gold nanoparticles and magnetic nanoparticles.
    Zheng J; Cheng GF; He PG; Fang YZ
    Talanta; 2010 Mar; 80(5):1868-72. PubMed ID: 20152425
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Signal-on electrochemiluminescence biosensor for thrombin based on target-induced conjunction of split aptamer fragments.
    Lin Z; Chen L; Zhu X; Qiu B; Chen G
    Chem Commun (Camb); 2010 Aug; 46(30):5563-5. PubMed ID: 20532276
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads.
    Centi S; Tombelli S; Minunni M; Mascini M
    Anal Chem; 2007 Feb; 79(4):1466-73. PubMed ID: 17297945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rational design of a thrombin electrochemical aptasensor by conjugating two DNA aptamers with G-quadruplex halves.
    Yan Z; Han Z; Huang H; Shen H; Lu X
    Anal Biochem; 2013 Nov; 442(2):237-40. PubMed ID: 23872010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.