BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 37326714)

  • 1. Genome-Wide Mapping of Protein-DNA Interactions on Nascent Chromatin.
    Xu C; Corces VG
    Methods Mol Biol; 2018; 1766():231-238. PubMed ID: 29605856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of transcription factor binding map accuracy utilizing knockout-mouse models.
    Krebs W; Schmidt SV; Goren A; De Nardo D; Labzin L; Bovier A; Ulas T; Theis H; Kraut M; Latz E; Beyer M; Schultze JL
    Nucleic Acids Res; 2014 Dec; 42(21):13051-60. PubMed ID: 25378309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ChIP-Seq: technical considerations for obtaining high-quality data.
    Kidder BL; Hu G; Zhao K
    Nat Immunol; 2011 Sep; 12(10):918-22. PubMed ID: 21934668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perm-seq: Mapping Protein-DNA Interactions in Segmental Duplication and Highly Repetitive Regions of Genomes with Prior-Enhanced Read Mapping.
    Zeng X; Li B; Welch R; Rojo C; Zheng Y; Dewey CN; Keleş S
    PLoS Comput Biol; 2015 Oct; 11(10):e1004491. PubMed ID: 26484757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized protocols for chromatin immunoprecipitation of exogenously expressed epitope-tagged proteins.
    Fang W; Liao C; Zhang Q
    STAR Protoc; 2023 Mar; 4(1):102050. PubMed ID: 36853721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ChIP-ping the branches of the tree: functional genomics and the evolution of eukaryotic gene regulation.
    Marinov GK; Kundaje A
    Brief Funct Genomics; 2018 Mar; 17(2):116-137. PubMed ID: 29529131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-throughput chromatin immunoprecipitation approach reveals principles of dynamic gene regulation in mammals.
    Garber M; Yosef N; Goren A; Raychowdhury R; Thielke A; Guttman M; Robinson J; Minie B; Chevrier N; Itzhaki Z; Blecher-Gonen R; Bornstein C; Amann-Zalcenstein D; Weiner A; Friedrich D; Meldrim J; Ram O; Cheng C; Gnirke A; Fisher S; Friedman N; Wong B; Bernstein BE; Nusbaum C; Hacohen N; Regev A; Amit I
    Mol Cell; 2012 Sep; 47(5):810-22. PubMed ID: 22940246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An optimized protocol for rapid, sensitive and robust on-bead ChIP-seq from primary cells.
    Texari L; Spann NJ; Troutman TD; Sakai M; Seidman JS; Heinz S
    STAR Protoc; 2021 Mar; 2(1):100358. PubMed ID: 33718886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Cleavage Under Targets and Tagmentation (CUT&Tag) Assay in Mouse Myoblast Research.
    Li Y; Wu X; Hu P
    J Vis Exp; 2024 Mar; (205):. PubMed ID: 38497648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin immunoprecipitation improvements for the processing of small frozen pieces of adipose tissue.
    Castellano-Castillo D; Denechaud PD; Moreno-Indias I; Tinahones F; Fajas L; Queipo-Ortuño MI; Cardona F
    PLoS One; 2018; 13(2):e0192314. PubMed ID: 29444131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro-chromatin Immunoprecipation (μChIP) Protocol for Real-time PCR Analysis of a Limited Amount of Cells.
    Gillotin S; Guillemot F
    Bio Protoc; 2016 Jun; 6(12):. PubMed ID: 29075654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetics and suicide: investigating altered H3K14ac unveiled differential expression in
    Arčan IŠ; Kouter K; Zupanc T; Paska AV
    Epigenomics; 2024 Mar; ():1-14. PubMed ID: 38545853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacological manipulation of transcription factor protein-protein interactions: opportunities and obstacles.
    Fontaine F; Overman J; François M
    Cell Regen; 2015; 4(1):2. PubMed ID: 25848531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Circulating Exosomal miRNA-3976 in Early Diabetic Retinopathy.
    Yang S; Zhang J; Zeng T; Zheng J; Min J; Chen L
    Int J Nanomedicine; 2023; 18():3695-3709. PubMed ID: 37427366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism underlying Müller cell pyroptosis and its role in the development of proliferative vitreoretinopathy.
    Bai Y; Xie M; Zhu Y
    Clinics (Sao Paulo); 2023; 78():100241. PubMed ID: 37418795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin Immunoprecipitation Assay in Mouse Retinal Tissue.
    Wang Z; Ji S; Ma JH; Chen J; Tang S
    Methods Mol Biol; 2023; 2678():183-189. PubMed ID: 37326714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin Immunoprecipitation from Mouse Embryonic Tissue or Adherent Cells in Culture, Followed by Next-Generation Sequencing.
    Soares MAF; Castro DS
    Methods Mol Biol; 2018; 1689():53-63. PubMed ID: 29027164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin immunoprecipitation and chromatin immunoprecipitation with massively parallel sequencing on mouse embryonic tissue.
    Amin S; Bobola N
    Methods Mol Biol; 2014; 1196():231-9. PubMed ID: 25151167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin Preparation and Chromatin Immunoprecipitation from Drosophila Heads.
    Andrenacci D; Cernilogar FM
    Methods Mol Biol; 2023; 2655():19-30. PubMed ID: 37212985
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.