These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37327342)

  • 1. Nuclear quadrupole resonance spectroscopy with a femtotesla diamond magnetometer.
    Silani Y; Smits J; Fescenko I; Malone MW; McDowell AF; Jarmola A; Kehayias P; Richards BA; Mosavian N; Ristoff N; Acosta VM
    Sci Adv; 2023 Jun; 9(24):eadh3189. PubMed ID: 37327342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diamond magnetometer enhanced by ferrite flux concentrators.
    Fescenko I; Jarmola A; Savukov I; Kehayias P; Smits J; Damron J; Ristoff N; Mosavian N; Acosta VM
    Phys Rev Res; 2020; 2(2):. PubMed ID: 33117992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid magnetometer towards femtotesla sensitivity under ambient conditions.
    Xie Y; Yu H; Zhu Y; Qin X; Rong X; Duan CK; Du J
    Sci Bull (Beijing); 2021 Jan; 66(2):127-132. PubMed ID: 36654219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SQUID detected NMR and NQR. Superconducting Quantum Interference Device.
    Augustine MP; TonThat DM; Clarke J
    Solid State Nucl Magn Reson; 1998 Mar; 11(1-2):139-56. PubMed ID: 9650797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip.
    Kehayias P; Jarmola A; Mosavian N; Fescenko I; Benito FM; Laraoui A; Smits J; Bougas L; Budker D; Neumann A; Brueck SRJ; Acosta VM
    Nat Commun; 2017 Aug; 8(1):188. PubMed ID: 28775280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Picotesla magnetometry of microwave fields with diamond sensors.
    Wang Z; Kong F; Zhao P; Huang Z; Yu P; Wang Y; Shi F; Du J
    Sci Adv; 2022 Aug; 8(32):eabq8158. PubMed ID: 35947671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interleaved NQR detection using atomic magnetometers.
    Quiroz DR; Cooper RJ; Foley EL; Kornack TW; Lee GJ; Sauer KL
    J Magn Reson; 2022 Oct; 343():107288. PubMed ID: 36209574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized Unilateral Magnetic Resonance Sensor with Constant Gradient and Its Applications in Composite Insulators.
    Guo P; Yang C; Wu J; Xu Z
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A High-Sensitivity Tunable Two-Beam Fiber-Coupled High-Density Magnetometer with Laser Heating.
    Savukov I; Boshier MG
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27754358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear quadrupole resonance of norephedrine.
    Shinohara J; Kobayashi K; Sato-Akaba H; Itozaki H
    Solid State Nucl Magn Reson; 2011 Oct; 40(3):121-5. PubMed ID: 21924876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional high-inductance birdcage coil for NQR applications.
    Peshkovsky AS; Cerioni L; Osan TM; Avdievich NI; Pusiol DJ
    Solid State Nucl Magn Reson; 2006 Sep; 30(2):75-80. PubMed ID: 16584871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage-driven, local, and efficient excitation of nitrogen-vacancy centers in diamond.
    Labanowski D; Bhallamudi VP; Guo Q; Purser CM; McCullian BA; Hammel PC; Salahuddin S
    Sci Adv; 2018 Sep; 4(9):eaat6574. PubMed ID: 30202783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanothermometry with Enhanced Sensitivity and Enlarged Working Range Using Diamond Sensors.
    Liu GQ; Liu RB; Li Q
    Acc Chem Res; 2023 Jan; 56(2):95-105. PubMed ID: 36594628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sub-picotesla widely tunable atomic magnetometer operating at room-temperature in unshielded environments.
    Deans C; Marmugi L; Renzoni F
    Rev Sci Instrum; 2018 Aug; 89(8):083111. PubMed ID: 30184634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadband radio-frequency transmitter for fast nuclear spin control.
    Herb K; Zopes J; Cujia KS; Degen CL
    Rev Sci Instrum; 2020 Nov; 91(11):113106. PubMed ID: 33261455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetometer with nitrogen-vacancy center in a bulk diamond for detecting magnetic nanoparticles in biomedical applications.
    Kuwahata A; Kitaizumi T; Saichi K; Sato T; Igarashi R; Ohshima T; Masuyama Y; Iwasaki T; Hatano M; Jelezko F; Kusakabe M; Yatsui T; Sekino M
    Sci Rep; 2020 Feb; 10(1):2483. PubMed ID: 32051447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplexed sensing of biomolecules with optically detected magnetic resonance of nitrogen-vacancy centers in diamond.
    Kayci M; Fan J; Bakirman O; Herrmann A
    Proc Natl Acad Sci U S A; 2021 Dec; 118(51):. PubMed ID: 34903662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-sensitivity optical-fiber magnetic sensor based on diamond and magnetic flux concentrators.
    Shao J; Luo Y; Chen J; Huang H; Liu GS; Chen L; Chen Z; Chen Y
    Opt Express; 2023 Apr; 31(9):14685-14693. PubMed ID: 37157327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Demonstration of diamond nuclear spin gyroscope.
    Jarmola A; Lourette S; Acosta VM; Birdwell AG; Blümler P; Budker D; Ivanov T; Malinovsky VS
    Sci Adv; 2021 Oct; 7(43):eabl3840. PubMed ID: 34678066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All Fiber Vector Magnetometer Based on Nitrogen-Vacancy Center.
    Zhao M; Lin Q; Meng Q; Shan W; Zhu L; Chen Y; Liu T; Zhao L; Jiang Z
    Nanomaterials (Basel); 2023 Mar; 13(5):. PubMed ID: 36903827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.