These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 37327373)
1. A Safer Path to Cellular Rejuvenation: Endogenous Oct4 Activation via CRISPR/dCas9 in Progeria Mouse Models. Hu D; Borgne EL; Meinl R Cell Reprogram; 2023 Aug; 25(4):136-138. PubMed ID: 37327373 [TBL] [Abstract][Full Text] [Related]
2. Transcriptional activation of endogenous Oct4 via the CRISPR/dCas9 activator ameliorates Hutchinson-Gilford progeria syndrome in mice. Kim J; Hwang Y; Kim S; Chang Y; Kim Y; Kwon Y; Kim J Aging Cell; 2023 Jun; 22(6):e13825. PubMed ID: 36964992 [TBL] [Abstract][Full Text] [Related]
3. Rejuvenation by Partial Reprogramming of the Epigenome. Mendelsohn AR; Larrick JW; Lei JL Rejuvenation Res; 2017 Apr; 20(2):146-150. PubMed ID: 28314379 [TBL] [Abstract][Full Text] [Related]
4. Targeted partial reprogramming of age-associated cell states improves markers of health in mouse models of aging. Sahu SK; Reddy P; Lu J; Shao Y; Wang C; Tsuji M; Delicado EN; Rodriguez Esteban C; Belmonte JCI Sci Transl Med; 2024 Sep; 16(764):eadg1777. PubMed ID: 39259812 [TBL] [Abstract][Full Text] [Related]
5. Vascular Smooth Muscle-Specific Progerin Expression Accelerates Atherosclerosis and Death in a Mouse Model of Hutchinson-Gilford Progeria Syndrome. Hamczyk MR; Villa-Bellosta R; Gonzalo P; Andrés-Manzano MJ; Nogales P; Bentzon JF; López-Otín C; Andrés V Circulation; 2018 Jul; 138(3):266-282. PubMed ID: 29490993 [TBL] [Abstract][Full Text] [Related]
6. Identification of mitochondrial dysfunction in Hutchinson-Gilford progeria syndrome through use of stable isotope labeling with amino acids in cell culture. Rivera-Torres J; Acín-Perez R; Cabezas-Sánchez P; Osorio FG; Gonzalez-Gómez C; Megias D; Cámara C; López-Otín C; Enríquez JA; Luque-García JL; Andrés V J Proteomics; 2013 Oct; 91():466-77. PubMed ID: 23969228 [TBL] [Abstract][Full Text] [Related]
7. OCT4 activity during conversion of human intermediately reprogrammed stem cells to iPSCs through mesenchymal-epithelial transition. Teshigawara R; Hirano K; Nagata S; Ainscough J; Tada T Development; 2016 Jan; 143(1):15-23. PubMed ID: 26657769 [TBL] [Abstract][Full Text] [Related]
8. Cellular reprogramming with multigene activation by the delivery of CRISPR/dCas9 ribonucleoproteins via magnetic peptide-imprinted chitosan nanoparticles. Lee MH; Lin CC; Thomas JL; Li JA; Lin HY Mater Today Bio; 2021 Jan; 9():100091. PubMed ID: 33521619 [TBL] [Abstract][Full Text] [Related]
10. Cellular stress and AMPK activation as a common mechanism of action linking the effects of metformin and diverse compounds that alleviate accelerated aging defects in Hutchinson-Gilford progeria syndrome. Finley J Med Hypotheses; 2018 Sep; 118():151-162. PubMed ID: 30037605 [TBL] [Abstract][Full Text] [Related]
11. Multi-omic rejuvenation of naturally aged tissues by a single cycle of transient reprogramming. Chondronasiou D; Gill D; Mosteiro L; Urdinguio RG; Berenguer-Llergo A; Aguilera M; Durand S; Aprahamian F; Nirmalathasan N; Abad M; Martin-Herranz DE; Stephan-Otto Attolini C; Prats N; Kroemer G; Fraga MF; Reik W; Serrano M Aging Cell; 2022 Mar; 21(3):e13578. PubMed ID: 35235716 [TBL] [Abstract][Full Text] [Related]
12. The Molecular and Cellular Basis of Hutchinson-Gilford Progeria Syndrome and Potential Treatments. Batista NJ; Desai SG; Perez AM; Finkelstein A; Radigan R; Singh M; Landman A; Drittel B; Abramov D; Ahsan M; Cornwell S; Zhang D Genes (Basel); 2023 Feb; 14(3):. PubMed ID: 36980874 [TBL] [Abstract][Full Text] [Related]
14. CRISPR-Based Chromatin Remodeling of the Endogenous Oct4 or Sox2 Locus Enables Reprogramming to Pluripotency. Liu P; Chen M; Liu Y; Qi LS; Ding S Cell Stem Cell; 2018 Feb; 22(2):252-261.e4. PubMed ID: 29358044 [TBL] [Abstract][Full Text] [Related]
15. Vascular endothelium-targeted Sun S; Qin W; Tang X; Meng Y; Hu W; Zhang S; Qian M; Liu Z; Cao X; Pang Q; Zhao B; Wang Z; Zhou Z; Liu B Sci Adv; 2020 Feb; 6(8):eaay5556. PubMed ID: 32128409 [TBL] [Abstract][Full Text] [Related]
16. In Vivo Transient and Partial Cell Reprogramming to Pluripotency as a Therapeutic Tool for Neurodegenerative Diseases. Tamanini S; Comi GP; Corti S Mol Neurobiol; 2018 Aug; 55(8):6850-6862. PubMed ID: 29353456 [TBL] [Abstract][Full Text] [Related]
18. NF-κB activation impairs somatic cell reprogramming in ageing. Soria-Valles C; Osorio FG; Gutiérrez-Fernández A; De Los Angeles A; Bueno C; Menéndez P; Martín-Subero JI; Daley GQ; Freije JM; López-Otín C Nat Cell Biol; 2015 Aug; 17(8):1004-13. PubMed ID: 26214134 [TBL] [Abstract][Full Text] [Related]
19. Hutchinson-Gilford Progeria Syndrome (Hgps) and Application of Gene Therapy Based Crispr/Cas Technology as A Promising Innovative Treatment Approach. Rajeev M; Ratan C; Krishnan K; Vijayan M Recent Pat Biotechnol; 2021; 15(4):266-285. PubMed ID: 34602042 [TBL] [Abstract][Full Text] [Related]
20. Impairment of nuclear F-actin formation and its relevance to cellular phenotypes in Hutchinson-Gilford progeria syndrome. Takahashi Y; Hiratsuka S; Machida N; Takahashi D; Matsushita J; Hozak P; Misteli T; Miyamoto K; Harata M Nucleus; 2020 Dec; 11(1):250-263. PubMed ID: 32954953 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]