These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37327445)

  • 1. Tangent Space Approach for Thermal Tensor Network Simulations of the 2D Hubbard Model.
    Li Q; Gao Y; He YY; Qi Y; Chen BB; Li W
    Phys Rev Lett; 2023 Jun; 130(22):226502. PubMed ID: 37327445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum Monte Carlo study of the Hubbard model with next-nearest-neighbor hopping t': pairing and magnetism.
    Yang S; Ying T; Li W; Yang J; Sun X; Li X
    J Phys Condens Matter; 2021 Mar; 33(11):115601. PubMed ID: 33316793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topological order in the pseudogap metal.
    Scheurer MS; Chatterjee S; Wu W; Ferrero M; Georges A; Sachdev S
    Proc Natl Acad Sci U S A; 2018 Apr; 115(16):E3665-E3672. PubMed ID: 29610351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum critical point at finite doping in the 2D Hubbard model: a dynamical cluster quantum Monte Carlo study.
    Vidhyadhiraja NS; Macridin A; Sen C; Jarrell M; Ma M
    Phys Rev Lett; 2009 May; 102(20):206407. PubMed ID: 19519050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudogaps in the 2D Hubbard Model.
    Huscroft C; Jarrell M; Maier T; Moukouri S; Tahvildarzadeh AN
    Phys Rev Lett; 2001 Jan; 86(1):139-142. PubMed ID: 11136113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced
    Yang S; Liu X; Li W; Yang J; Ying T; Li X; Sun X
    J Phys Condens Matter; 2022 Jul; 34(37):. PubMed ID: 35790173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms.
    Hart RA; Duarte PM; Yang TL; Liu X; Paiva T; Khatami E; Scalettar RT; Trivedi N; Huse DA; Hulet RG
    Nature; 2015 Mar; 519(7542):211-4. PubMed ID: 25707803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-Fermi-liquid d-wave metal phase of strongly interacting electrons.
    Jiang HC; Block MS; Mishmash RV; Garrison JR; Sheng DN; Motrunich OI; Fisher MP
    Nature; 2013 Jan; 493(7430):39-44. PubMed ID: 23254935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tensor Network Annealing Algorithm for Two-Dimensional Thermal States.
    Kshetrimayum A; Rizzi M; Eisert J; Orús R
    Phys Rev Lett; 2019 Feb; 122(7):070502. PubMed ID: 30848636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient world-line-based quantum Monte Carlo method without Hubbard-Stratonovich transformation.
    Wang J; Pan W; Sun DY
    Sci Rep; 2022 May; 12(1):8251. PubMed ID: 35581367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bilayer t-J-J_{⊥} Model and Magnetically Mediated Pairing in the Pressurized Nickelate La_{3}Ni_{2}O_{7}.
    Qu XZ; Qu DW; Chen J; Wu C; Yang F; Li W; Su G
    Phys Rev Lett; 2024 Jan; 132(3):036502. PubMed ID: 38307085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupled Cluster as an Impurity Solver for Green's Function Embedding Methods.
    Shee A; Zgid D
    J Chem Theory Comput; 2019 Nov; 15(11):6010-6024. PubMed ID: 31518129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental realization of an extended Fermi-Hubbard model using a 2D lattice of dopant-based quantum dots.
    Wang X; Khatami E; Fei F; Wyrick J; Namboodiri P; Kashid R; Rigosi AF; Bryant G; Silver R
    Nat Commun; 2022 Nov; 13(1):6824. PubMed ID: 36369280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infinite variance in fermion quantum Monte Carlo calculations.
    Shi H; Zhang S
    Phys Rev E; 2016 Mar; 93(3):033303. PubMed ID: 27078480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature and bath size in exact diagonalization dynamical mean field theory.
    Liebsch A; Ishida H
    J Phys Condens Matter; 2012 Feb; 24(5):053201. PubMed ID: 22156113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superconductivity from repulsion in the doped 2D electronic Hubbard model: an entanglement perspective.
    Mukherjee A; Lal S
    J Phys Condens Matter; 2022 Apr; 34(27):. PubMed ID: 35413696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spin and Charge Correlations across the Metal-to-Insulator Crossover in the Half-Filled 2D Hubbard Model.
    Kim AJ; Simkovic F; Kozik E
    Phys Rev Lett; 2020 Mar; 124(11):117602. PubMed ID: 32242729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absence of a spin liquid phase in the Hubbard model on the honeycomb lattice.
    Sorella S; Otsuka Y; Yunoki S
    Sci Rep; 2012; 2():992. PubMed ID: 23251778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extended Crossover from a Fermi Liquid to a Quasiantiferromagnet in the Half-Filled 2D Hubbard Model.
    Šimkovic F; LeBlanc JPF; Kim AJ; Deng Y; Prokof'ev NV; Svistunov BV; Kozik E
    Phys Rev Lett; 2020 Jan; 124(1):017003. PubMed ID: 31976700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unveiling the Finite Temperature Physics of Hydrogen Chains via Auxiliary Field Quantum Monte Carlo.
    Liu Y; Shen T; Zhang H; Rubenstein B
    J Chem Theory Comput; 2020 Jul; 16(7):4298-4314. PubMed ID: 32456436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.