These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37327460)

  • 1. B, N, and Si Single-Doping at Graphene/Cu (111) Interfaces to Adjust Electrical Properties.
    Li D; Yang P
    Langmuir; 2023 Jul; 39(26):9172-9179. PubMed ID: 37327460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density Functional Theory Study of B, N, and Si Doped Penta-Graphene as the Potential Gas Sensors for NH
    Chen G; Gan L; Xiong H; Zhang H
    Membranes (Basel); 2022 Jan; 12(1):. PubMed ID: 35054603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable Electronic Properties of Nitrogen and Sulfur Doped Graphene: Density Functional Theory Approach.
    Lee JH; Kwon SH; Kwon S; Cho M; Kim KH; Han TH; Lee SG
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30781379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interface Bonding Properties of CrAlSiN-Coated Cemented Carbides Doped with CeO
    Yang J; Yue Y; Wang Y; Zhang Y
    Molecules; 2023 Apr; 28(8):. PubMed ID: 37110818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on Simulation and Experiment of Cu, C-Doped Ag/Ni Contact Materials.
    Zhang Y; Wang J; Zhu Y; Cui D; Lu N
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial icelike water local doping of graphene.
    Hong Y; Wang S; Li Q; Song X; Wang Z; Zhang X; Besenbacher F; Dong M
    Nanoscale; 2019 Nov; 11(41):19334-19340. PubMed ID: 31423505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interface-Engineered Charge-Transport Properties in Benzenedithiol Molecular Electronic Junctions via Chemically p-Doped Graphene Electrodes.
    Jang Y; Kwon SJ; Shin J; Jeong H; Hwang WT; Kim J; Koo J; Ko TY; Ryu S; Wang G; Lee TW; Lee T
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):42043-42049. PubMed ID: 29130304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on Interface Bonding Properties of TiAlSiN/WC-Co Doped with Graphene.
    Yang J; Wang Y; Lv H; Yue Y; Li S; Zhu R
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The graphene/n-Ge(110) interface: structure, doping, and electronic properties.
    Tesch J; Paschke F; Fonin M; Wietstruk M; Böttcher S; Koch RJ; Bostwick A; Jozwiak C; Rotenberg E; Makarova A; Paulus B; Voloshina E; Dedkov Y
    Nanoscale; 2018 Mar; 10(13):6088-6098. PubMed ID: 29546912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the Strength of the Selenium-Graphene Interfaces for Energy Storage Systems.
    Sharma V; Mitlin D; Datta D
    Langmuir; 2021 Feb; 37(6):2029-2039. PubMed ID: 33524260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Si-doped graphene: an ideal sensor for NO- or NO2-detection and metal-free catalyst for N2O-reduction.
    Chen Y; Gao B; Zhao JX; Cai QH; Fu HG
    J Mol Model; 2012 May; 18(5):2043-54. PubMed ID: 21881853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In/Ga-Doped Si as Anodes for Si-Air Batteries with Restrained Self-Corrosion and Surface Passivation: A First-Principles Study.
    Wang D; Zhao T; Yu Y
    Molecules; 2023 Apr; 28(9):. PubMed ID: 37175193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heteroatom-Doped Graphenes as Actively Interacting 2D Encapsulation Media for Mg-Based Hydrogen Storage.
    Cho Y; Kang S; Wood BC; Cho ES
    ACS Appl Mater Interfaces; 2022 May; 14(18):20823-20834. PubMed ID: 35471930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and adjustment of the graphene work function via size, modification, defects, and doping: a first-principle theory study.
    Yang N; Yang D; Chen L; Liu D; Cai M; Fan X
    Nanoscale Res Lett; 2017 Dec; 12(1):642. PubMed ID: 29288340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alkaline earth atom doping-induced changes in the electronic and magnetic properties of graphene: a density functional theory study.
    Serraon ACF; Del Rosario JAD; Abel Chuang PY; Chong MN; Morikawa Y; Padama AAB; Ocon JD
    RSC Adv; 2021 Feb; 11(11):6268-6283. PubMed ID: 35423162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing Wettability of Cu
    Yu S; Cheng F; He L; Tang W; Wang Y; Chen R; Hu C; Ma X; Shen H
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of hydrogen sulfide and ammonia adsorption on P- and Si-doped graphene: density functional theory calculations.
    Comparán Padilla VE; Romero de la Cruz MT; Ávila Alvarado YE; García Díaz R; Rodríguez García CE; Hernández Cocoletzi G
    J Mol Model; 2019 Mar; 25(4):94. PubMed ID: 30859395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study of interfacial thermal conductance between metal and semiconductor.
    Wu K; Zhang L; Wang D; Li F; Zhang P; Sang L; Liao M; Tang K; Ye J; Gu S
    Sci Rep; 2022 Nov; 12(1):19907. PubMed ID: 36402811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A density functional theory study of the role of functionalized graphene particles as effective additives in power cable insulation.
    Song S; Zhao H; Zheng X; Zhang H; Liu Y; Wang Y; Han B
    R Soc Open Sci; 2018 Feb; 5(2):170772. PubMed ID: 29515821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Doping of graphene induced by boron/silicon substrate.
    Dianat A; Liao Z; Gall M; Zhang T; Gutierrez R; Zschech E; Cuniberti G
    Nanotechnology; 2017 May; 28(21):215701. PubMed ID: 28402285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.