These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 37327624)
41. Thermodynamics of aggregate formation between a non-ionic polymer and ionic surfactants: An isothermal titration calorimetric study. Patel SG; Bummer PM Int J Pharm; 2017 Jan; 516(1-2):131-143. PubMed ID: 27789368 [TBL] [Abstract][Full Text] [Related]
42. Effect of alcohol addition to the aqueous phase on the thermal effects of micellization of cationic benzyldimethyldodecylammonium bromide and its adsorption onto porous and nonporous silicas. Benalla H; Zajac J J Colloid Interface Sci; 2004 Apr; 272(2):253-61. PubMed ID: 15028484 [TBL] [Abstract][Full Text] [Related]
43. Amphiphiles without Head-and-Tail Design: Nanostructures Based on the Self-Assembly of Anionic Boron Cluster Compounds. Fernandez-Alvarez R; Ďorďovič V; Uchman M; Matějíček P Langmuir; 2018 Mar; 34(12):3541-3554. PubMed ID: 29144761 [TBL] [Abstract][Full Text] [Related]
44. Small-angle neutron scattering study of the micellization of photosensitive surfactants in solution and in the presence of a hydrophobically modified polyelectrolyte. Lee CT; Smith KA; Hatton TA Langmuir; 2009 Dec; 25(24):13784-94. PubMed ID: 19715336 [TBL] [Abstract][Full Text] [Related]
45. Micelle Formation of Anionic Surfactant with Divalent Counterion of Separate Electric Charge. Yamabe T; Moroi Y J Colloid Interface Sci; 1999 Jul; 215(1):58-63. PubMed ID: 10362473 [TBL] [Abstract][Full Text] [Related]
46. Use of isothermal titration calorimetry to study surfactant aggregation in colloidal systems. Loh W; Brinatti C; Tam KC Biochim Biophys Acta; 2016 May; 1860(5):999-1016. PubMed ID: 26459003 [TBL] [Abstract][Full Text] [Related]
47. Unfolding and Refolding of Protein by a Combination of Ionic and Nonionic Surfactants. Saha D; Ray D; Kohlbrecher J; Aswal VK ACS Omega; 2018 Jul; 3(7):8260-8270. PubMed ID: 31458962 [TBL] [Abstract][Full Text] [Related]
48. Exploring Physicochemical Interactions of Different Salts with Sodium Patra N; Ray D; Aswal VK; Ghosh S ACS Omega; 2018 Aug; 3(8):9256-9266. PubMed ID: 31459057 [TBL] [Abstract][Full Text] [Related]
49. Structural organization of cetyltrimethylammonium sulfate in aqueous solution: The effect of Na2SO4. Feitosa E; Brazolin MR; Naal RM; Del Lama MP; Lopes JR; Loh W; Vasilescu M J Colloid Interface Sci; 2006 Jul; 299(2):883-9. PubMed ID: 16564535 [TBL] [Abstract][Full Text] [Related]
50. Micellization Behavior of Surface Active Ionic Liquids Having Aromatic Counterions in Aqueous Media. Singh G; Singh G; Kang TS J Phys Chem B; 2016 Feb; 120(6):1092-105. PubMed ID: 26800340 [TBL] [Abstract][Full Text] [Related]
51. Aggregation behavior of hexadecyltrimethylammonium surfactants with various counterions in aqueous solution. Jiang N; Li P; Wang Y; Wang J; Yan H; Thomas RK J Colloid Interface Sci; 2005 Jun; 286(2):755-60. PubMed ID: 15897094 [TBL] [Abstract][Full Text] [Related]
52. Molecular-thermodynamic theory of micellization of multicomponent surfactant mixtures: 2. pH-sensitive surfactants. Goldsipe A; Blankschtein D Langmuir; 2007 May; 23(11):5953-62. PubMed ID: 17444663 [TBL] [Abstract][Full Text] [Related]
53. Non-surface activity and micellization of ionic amphiphilic diblock copolymers in water. Hydrophobic chain length dependence and salt effect on surface activity and the critical micelle concentration. Kaewsaiha P; Matsumoto K; Matsuoka H Langmuir; 2005 Oct; 21(22):9938-45. PubMed ID: 16229512 [TBL] [Abstract][Full Text] [Related]
54. Molecular-thermodynamic framework to predict the micellization behavior of mixtures of fluorocarbon-based and hydrocarbon-based surfactants. Iyer J; Blankschtein D J Phys Chem B; 2014 Mar; 118(9):2377-88. PubMed ID: 24512047 [TBL] [Abstract][Full Text] [Related]
55. Counteranion effect on micellization of cationic gemini surfactants 14-2-14: Hofmeister and other counterions. Manet S; Karpichev Y; Bassani D; Kiagus-Ahmad R; Oda R Langmuir; 2010 Jul; 26(13):10645-56. PubMed ID: 20394385 [TBL] [Abstract][Full Text] [Related]
56. Self-Assembly of Lysine-Based Dendritic Surfactants Modeled by the Self-Consistent Field Approach. Shavykin OV; Leermakers FAM; Neelov IM; Darinskii AA Langmuir; 2018 Jan; 34(4):1613-1626. PubMed ID: 29286663 [TBL] [Abstract][Full Text] [Related]
57. Thermodynamics of micellization from heat-capacity measurements. Šarac B; Bešter-Rogač M; Lah J Chemphyschem; 2014 Jun; 15(9):1827-33. PubMed ID: 24760780 [TBL] [Abstract][Full Text] [Related]
58. Structure-Property Relationships in Sodium Muricholate Derivative (Bile Salts) Micellization: The Effect of Conformation of Steroid Skeleton on Hydrophobicity and Micelle Formation-Pattern Recognition and Potential Membranoprotective Properties. Poša M; Popović K Mol Pharm; 2017 Oct; 14(10):3343-3355. PubMed ID: 28863265 [TBL] [Abstract][Full Text] [Related]
59. Counterion Effects in Aqueous Solutions of Cationic Surfactants: Electromotive Force Measurements and Thermodynamic Model. Gaillon L; Lelièvre J; Gaboriaud R J Colloid Interface Sci; 1999 May; 213(2):287-297. PubMed ID: 10222068 [TBL] [Abstract][Full Text] [Related]
60. Thermodynamics of surfactants, block copolymers and their mixtures in water: the role of the isothermal calorimetry. De Lisi R; Milioto S; Muratore N Int J Mol Sci; 2009 Jun; 10(7):2873-2895. PubMed ID: 19742173 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]