BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 37327663)

  • 1. Detection technologies of volatile organic compounds in the breath for cancer diagnoses.
    Le T; Priefer R
    Talanta; 2023 Dec; 265():124767. PubMed ID: 37327663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methods to Detect Volatile Organic Compounds for Breath Biopsy Using Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry.
    Schulz E; Woollam M; Grocki P; Davis MD; Agarwal M
    Molecules; 2023 Jun; 28(11):. PubMed ID: 37299010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying exhaled acetone and isoprene through solid phase microextraction and gas chromatography-mass spectrometry.
    Schulz E; Woollam M; Vashistha S; Agarwal M
    Anal Chim Acta; 2024 May; 1301():342468. PubMed ID: 38553125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating polyvinylidene fluoride - carbon black composites as solid phase microextraction coatings for the detection of urinary volatile organic compounds by gas chromatography-mass spectrometry.
    Woollam M; Grocki P; Schulz E; Siegel AP; Deiss F; Agarwal M
    J Chromatogr A; 2022 Dec; 1685():463606. PubMed ID: 36370629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Analysis of Volatile Compounds in the Flower Buds of Three
    Yue Y; Yin J; Xie J; Wu S; Ding H; Han L; Bie S; Song W; Zhang Y; Song X; Yu H; Li Z
    Molecules; 2024 Jan; 29(3):. PubMed ID: 38338347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrimination and characterization of volatile organic compounds in Lonicerae Japonicae flos and Lonicerae flos using multivariate statistics combined with headspace gas chromatography-ion mobility spectrometry and headspace solid-phase microextraction gas chromatography-mass spectrometry techniques.
    Wu T; Yin J; Wu X; Li W; Bie S; Zhao J; Song X; Yu H; Li Z
    Rapid Commun Mass Spectrom; 2024 Mar; 38(6):e9693. PubMed ID: 38356085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved quantification of livestock associated odorous volatile organic compounds in a standard flow-through system using solid-phase microextraction and gas chromatography-mass spectrometry.
    Yang X; Zhu W; Koziel JA; Cai L; Jenks WS; Laor Y; Leeuwen JH; Hoff SJ
    J Chromatogr A; 2015 Oct; 1414():31-40. PubMed ID: 26456221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross Platform Analysis of Volatile Organic Compounds Using Selected Ion Flow Tube and Proton-Transfer-Reaction Mass Spectrometry.
    Lin GP; Vadhwana B; Belluomo I; Boshier PR; Španěl P; Hanna GB
    J Am Soc Mass Spectrom; 2021 May; 32(5):1215-1223. PubMed ID: 33831301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of volatile compounds released by roasted coffee by selected ion flow tube mass spectrometry.
    Dryahina K; Smith D; Španěl P
    Rapid Commun Mass Spectrom; 2018 May; 32(9):739-750. PubMed ID: 29486530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel coupling technique based on thermal desorption gas chromatography with mass spectrometry and ion mobility spectrometry for breath analysis.
    Schanzmann H; Ruzsanyi V; Ahmad-Nejad P; Telgheder U; Sielemann S
    J Breath Res; 2023 Dec; 18(1):. PubMed ID: 38100823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of methyl thiocyanate in the headspace of Pseudomonas aeruginosa cultures and in the breath of cystic fibrosis patients by selected ion flow tube mass spectrometry.
    Shestivska V; Nemec A; Dřevínek P; Sovová K; Dryahina K; Spaněl P
    Rapid Commun Mass Spectrom; 2011 Sep; 25(17):2459-67. PubMed ID: 21818806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of a micropreconcentrator with solid-phase microextraction for analysis of trace volatile organic compounds by gas chromatography-mass spectrometry.
    Halder S; Xie Z; Nantz MH; Fu XA
    J Chromatogr A; 2022 Jun; 1673():463083. PubMed ID: 35508097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of volatile organic compounds from lung cancer patients and healthy controls-challenges and limitations of an observational study.
    Schallschmidt K; Becker R; Jung C; Bremser W; Walles T; Neudecker J; Leschber G; Frese S; Nehls I
    J Breath Res; 2016 Oct; 10(4):046007. PubMed ID: 27732569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discrimination and characterization of different coconut water (CW) by their phenolic composition and volatile organic compounds (VOCs) using LC-MS/MS, HS-SPME-GC-MS, and HS-GC-IMS.
    Zhang W; Chen Y; Yun Y; Li C; Fang Y; Zhang W
    J Food Sci; 2023 Sep; 88(9):3758-3772. PubMed ID: 37530630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel method for the determination of three volatile organic compounds in exhaled breath by solid-phase microextraction-ion mobility spectrometry.
    Allafchian AR; Majidian Z; Ielbeigi V; Tabrizchi M
    Anal Bioanal Chem; 2016 Jan; 408(3):839-47. PubMed ID: 26558761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid detection of sepsis in rats through volatile organic compounds in breath.
    Guamán AV; Carreras A; Calvo D; Agudo I; Navajas D; Pardo A; Marco S; Farré R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Jan; 881-882():76-82. PubMed ID: 22209594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of patients with lung cancer: results of a pilot study.
    Westhoff M; Litterst P; Freitag L; Urfer W; Bader S; Baumbach JI
    Thorax; 2009 Sep; 64(9):744-8. PubMed ID: 19158121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrimination and Characterization of the Volatile Organic Compounds in
    Li C; Wan H; Wu X; Yin J; Zhu L; Chen H; Song X; Han L; Yang W; Yu H; Li Z
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Listeria using exogenous volatile organic compound metabolites and their detection by static headspace-multi-capillary column-gas chromatography-ion mobility spectrometry (SHS-MCC-GC-IMS).
    Taylor C; Lough F; Stanforth SP; Schwalbe EC; Fowlis IA; Dean JR
    Anal Bioanal Chem; 2017 Jul; 409(17):4247-4256. PubMed ID: 28484808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-destructive egg breed separation using advanced VOC analytical techniques HSSE-GC-MS, PTR-TOF-MS, and SIFT-MS: Assessment of performance and systems' complementarity.
    Corion M; Portillo-Estrada M; Santos S; Lammertyn J; De Ketelaere B; Hertog M
    Food Res Int; 2024 Jan; 176():113802. PubMed ID: 38163682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.