These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37328139)

  • 1. Functional attachment of primary neurons and glia on radiopaque implantable biomaterials for nerve repair.
    Pawelec KM; Hix JML; Shapiro EM
    Nanomedicine; 2023 Aug; 52():102692. PubMed ID: 37328139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiopaque Implantable Biomaterials for Nerve Repair.
    Pawelec KM; Hix JM; Shapiro EM
    bioRxiv; 2023 Jan; ():. PubMed ID: 36711915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporating Tantalum Oxide Nanoparticles into Implantable Polymeric Biomedical Devices for Radiological Monitoring.
    Pawelec KM; Tu E; Chakravarty S; Hix JML; Buchanan L; Kenney L; Buchanan F; Chatterjee N; Das S; Alessio A; Shapiro EM
    Adv Healthc Mater; 2023 Jul; 12(18):e2203167. PubMed ID: 36848875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo micro-computed tomography evaluation of radiopaque, polymeric device degradation in normal and inflammatory environments.
    Pawelec KM; Hix JML; Troia A; MacRenaris KW; Kiupel M; Shapiro EM
    Acta Biomater; 2024 Jun; 181():222-234. PubMed ID: 38648912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo Biomedical Imaging of Immune Tolerant, Radiopaque Nanoparticle-Embedded Polymeric Device Degradation.
    Pawelec KM; Hix JML; Troia A; Kiupel M; Shapiro E
    bioRxiv; 2023 Oct; ():. PubMed ID: 37961412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporating Radiopacity into Implantable Polymeric Biomedical Devices for Clinical Radiological Monitoring.
    Pawelec KM; Tu E; Chakravarty S; Hix JM; Buchanan L; Kenney L; Buchanan F; Chatterjee N; Das S; Alessio A; Shapiro EM
    bioRxiv; 2023 Jan; ():. PubMed ID: 36711467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Material Composition and Implantation Site Affect in vivo Device Degradation Rate.
    Pawelec KM; Hix JML; Troia A; Kiupel M; Shapiro EM
    bioRxiv; 2024 Sep; ():. PubMed ID: 39314464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Additive manufactured biodegradable poly(glycerol sebacate methacrylate) nerve guidance conduits.
    Singh D; Harding AJ; Albadawi E; Boissonade FM; Haycock JW; Claeyssens F
    Acta Biomater; 2018 Sep; 78():48-63. PubMed ID: 30075322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering a platform for nerve regeneration with direct application to nerve repair technology.
    Pawelec KM; Yoon C; Giger RJ; Sakamoto J
    Biomaterials; 2019 Sep; 216():119263. PubMed ID: 31220794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peripheral nerve regeneration by microbraided poly(L-lactide-co-glycolide) biodegradable polymer fibers.
    Bini TB; Gao S; Xu X; Wang S; Ramakrishna S; Leong KW
    J Biomed Mater Res A; 2004 Feb; 68(2):286-95. PubMed ID: 14704970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiopacity Enhancements in Polymeric Implant Biomaterials: A Comprehensive Literature Review.
    Emonde CK; Eggers ME; Wichmann M; Hurschler C; Ettinger M; Denkena B
    ACS Biomater Sci Eng; 2024 Mar; 10(3):1323-1334. PubMed ID: 38330191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tantalum - Poly (L-lactic acid) nerve conduit for peripheral nerve regeneration.
    Almansoori AA; Hwang C; Lee SH; Kim B; Kim HE; Lee JH
    Neurosci Lett; 2020 Jul; 731():135049. PubMed ID: 32413537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental composite guidance conduits for peripheral nerve repair: an evaluation of ion release.
    Zhang XF; Coughlan A; O'Shea H; Towler MR; Kehoe S; Boyd D
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1654-63. PubMed ID: 24364973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tantalum oxide nanoparticles as versatile contrast agents for X-ray computed tomography.
    Chakravarty S; Hix JML; Wiewiora KA; Volk MC; Kenyon E; Shuboni-Mulligan DD; Blanco-Fernandez B; Kiupel M; Thomas J; Sempere LF; Shapiro EM
    Nanoscale; 2020 Apr; 12(14):7720-7734. PubMed ID: 32211669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetoactive Composite Conduits Based on Poly(3-hydroxybutyrate) and Magnetite Nanoparticles for Repair of Peripheral Nerve Injury.
    Shlapakova LE; Botvin VV; Mukhortova YR; Zharkova II; Alipkina SI; Zeltzer A; Dudun AA; Makhina T; Bonartseva GA; Voinova VV; Wagner DV; Pariy I; Bonartsev AP; Surmenev RA; Surmeneva MA
    ACS Appl Bio Mater; 2024 Feb; 7(2):1095-1114. PubMed ID: 38270084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-Term In Vitro Assessment of Biodegradable Radiopaque Composites for Fiducial Marker Fabrication.
    Górecka Ż; Choińska E; Heljak M; Święszkowski W
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration.
    Bian YZ; Wang Y; Aibaidoula G; Chen GQ; Wu Q
    Biomaterials; 2009 Jan; 30(2):217-25. PubMed ID: 18849069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guided regeneration with resorbable conduits in experimental peripheral nerve injuries.
    Nicoli Aldini N; Fini M; Rocca M; Giavaresi G; Giardino R
    Int Orthop; 2000; 24(3):121-5. PubMed ID: 10990379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A tissue-engineered conduit for peripheral nerve repair.
    Hadlock T; Elisseeff J; Langer R; Vacanti J; Cheney M
    Arch Otolaryngol Head Neck Surg; 1998 Oct; 124(10):1081-6. PubMed ID: 9776185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Material matters: Degradation products affect regenerating Schwann cells.
    Pawelec KM; Hix JML; Shapiro EM
    Biomater Adv; 2024 May; 159():213825. PubMed ID: 38479242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.