BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 37328457)

  • 1. Hybrid-DIA: intelligent data acquisition integrates targeted and discovery proteomics to analyze phospho-signaling in single spheroids.
    Martínez-Val A; Fort K; Koenig C; Van der Hoeven L; Franciosa G; Moehring T; Ishihama Y; Chen YJ; Makarov A; Xuan Y; Olsen JV
    Nat Commun; 2023 Jun; 14(1):3599. PubMed ID: 37328457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid and site-specific deep phosphoproteome profiling by data-independent acquisition without the need for spectral libraries.
    Bekker-Jensen DB; Bernhardt OM; Hogrebe A; Martinez-Val A; Verbeke L; Gandhi T; Kelstrup CD; Reiter L; Olsen JV
    Nat Commun; 2020 Feb; 11(1):787. PubMed ID: 32034161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A data-independent acquisition-based global phosphoproteomics system enables deep profiling.
    Kitata RB; Choong WK; Tsai CF; Lin PY; Chen BS; Chang YC; Nesvizhskii AI; Sung TY; Chen YJ
    Nat Commun; 2021 May; 12(1):2539. PubMed ID: 33953186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry.
    Parker BL; Yang G; Humphrey SJ; Chaudhuri R; Ma X; Peterman S; James DE
    Sci Signal; 2015 Jun; 8(380):rs6. PubMed ID: 26060331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepPhospho accelerates DIA phosphoproteome profiling through in silico library generation.
    Lou R; Liu W; Li R; Li S; He X; Shui W
    Nat Commun; 2021 Nov; 12(1):6685. PubMed ID: 34795227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Compact Quadrupole-Orbitrap Mass Spectrometer with FAIMS Interface Improves Proteome Coverage in Short LC Gradients.
    Bekker-Jensen DB; Martínez-Val A; Steigerwald S; Rüther P; Fort KL; Arrey TN; Harder A; Makarov A; Olsen JV
    Mol Cell Proteomics; 2020 Apr; 19(4):716-729. PubMed ID: 32051234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of DDA Library-Free Strategies for Phosphoproteomics and Ubiquitinomics Data-Independent Acquisition Data.
    Wen C; Wu X; Lin G; Yan W; Gan G; Xu X; Chen XY; Chen X; Liu X; Fu G; Zhong CQ
    J Proteome Res; 2023 Jul; 22(7):2232-2245. PubMed ID: 37256709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmarking commonly used software suites and analysis workflows for DIA proteomics and phosphoproteomics.
    Lou R; Cao Y; Li S; Lang X; Li Y; Zhang Y; Shui W
    Nat Commun; 2023 Jan; 14(1):94. PubMed ID: 36609502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving Phosphoproteomics Profiling Using Data-Independent Mass Spectrometry.
    Srinivasan A; Sing JC; Gingras AC; Röst HL
    J Proteome Res; 2022 Aug; 21(8):1789-1799. PubMed ID: 35877786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data Processing and Analysis for DIA-Based Phosphoproteomics Using Spectronaut.
    Martinez-Val A; Bekker-Jensen DB; Hogrebe A; Olsen JV
    Methods Mol Biol; 2021; 2361():95-107. PubMed ID: 34236657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid and In-Depth Coverage of the (Phospho-)Proteome With Deep Libraries and Optimal Window Design for dia-PASEF.
    Skowronek P; Thielert M; Voytik E; Tanzer MC; Hansen FM; Willems S; Karayel O; Brunner AD; Meier F; Mann M
    Mol Cell Proteomics; 2022 Sep; 21(9):100279. PubMed ID: 35944843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SPECHT - single-stage phosphopeptide enrichment and stable-isotope chemical tagging: quantitative phosphoproteomics of insulin action in muscle.
    Kettenbach AN; Sano H; Keller SR; Lienhard GE; Gerber SA
    J Proteomics; 2015 Jan; 114():48-60. PubMed ID: 25463755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MdFDIA: A Mass Defect Based Four-Plex Data-Independent Acquisition Strategy for Proteome Quantification.
    Di Y; Zhang Y; Zhang L; Tao T; Lu H
    Anal Chem; 2017 Oct; 89(19):10248-10255. PubMed ID: 28872844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal analytical strategies for sensitive and quantitative phosphoproteomics using TMT-based multiplexing.
    Koenig C; Martinez-Val A; Franciosa G; Olsen JV
    Proteomics; 2022 Oct; 22(19-20):e2100245. PubMed ID: 35713889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Density, Targeted Monitoring of Tyrosine Phosphorylation Reveals Activated Signaling Networks in Human Tumors.
    Stopfer LE; Flower CT; Gajadhar AS; Patel B; Gallien S; Lopez-Ferrer D; White FM
    Cancer Res; 2021 May; 81(9):2495-2509. PubMed ID: 33509940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass Defect-Based DiLeu Tagging for Multiplexed Data-Independent Acquisition.
    Zhong X; Frost DC; Yu Q; Li M; Gu TJ; Li L
    Anal Chem; 2020 Aug; 92(16):11119-11126. PubMed ID: 32649829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of SRM, MRM(3) , and DIA for the targeted analysis of phosphorylation dynamics in non-small cell lung cancer.
    Schmidlin T; Garrigues L; Lane CS; Mulder TC; van Doorn S; Post H; de Graaf EL; Lemeer S; Heck AJ; Altelaar AF
    Proteomics; 2016 Aug; 16(15-16):2193-205. PubMed ID: 27219855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DIA-SIFT: A Precursor and Product Ion Filter for Accurate Stable Isotope Data-Independent Acquisition Proteomics.
    Haynes SE; Majmudar JD; Martin BR
    Anal Chem; 2018 Aug; 90(15):8722-8726. PubMed ID: 29989796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SILAC-Based Quantitative Phosphoproteomics in Yeast.
    Hernáez ML; Gil C
    Methods Mol Biol; 2023; 2603():103-115. PubMed ID: 36370273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phospho-iTRAQ: assessing isobaric labels for the large-scale study of phosphopeptide stoichiometry.
    Glibert P; Meert P; Van Steendam K; Van Nieuwerburgh F; De Coninck D; Martens L; Dhaenens M; Deforce D
    J Proteome Res; 2015 Feb; 14(2):839-49. PubMed ID: 25510630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.