These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37328467)

  • 1. Understanding capacity fade in organic redox-flow batteries by combining spectroscopy with statistical inference techniques.
    Modak SV; Shen W; Singh S; Herrera D; Oudeif F; Goldsmith BR; Huan X; Kwabi DG
    Nat Commun; 2023 Jun; 14(1):3602. PubMed ID: 37328467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triarylamines as Catholytes in Aqueous Organic Redox Flow Batteries.
    Farag NL; Jethwa RB; Beardmore AE; Insinna T; O'Keefe CA; Klusener PAA; Grey CP; Wright DS
    ChemSusChem; 2023 Jul; 16(13):e202300128. PubMed ID: 36970847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrolyte Lifetime in Aqueous Organic Redox Flow Batteries: A Critical Review.
    Kwabi DG; Ji Y; Aziz MJ
    Chem Rev; 2020 Jul; 120(14):6467-6489. PubMed ID: 32053366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substituent Impact on Quinoxaline Performance and Degradation in Redox Flow Batteries.
    Modak SV; Pert D; Tami JL; Shen W; Abdullahi I; Huan X; McNeil AJ; Goldsmith BR; Kwabi DG
    J Am Chem Soc; 2024 Feb; 146(8):5173-5185. PubMed ID: 38358388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery.
    Duan W; Vemuri RS; Hu D; Yang Z; Wei X
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupled
    Zhao EW; Jónsson E; Jethwa RB; Hey D; Lyu D; Brookfield A; Klusener PAA; Collison D; Grey CP
    J Am Chem Soc; 2021 Feb; 143(4):1885-1895. PubMed ID: 33475344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All-Organic Redox Targeting with a Single Redox Moiety: Combining Organic Radical Batteries and Organic Redox Flow Batteries.
    Schröter E; Stolze C; Saal A; Schreyer K; Hager MD; Schubert US
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):6638-6648. PubMed ID: 35084188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Tunability of Toxicity for Viologen-Derivatives as Anolyte for Neutral Aqueous Organic Redox Flow Batteries.
    de la Parra S; Tamayo-Ramos JA; Rubio-Presa R; Perez-Antolin D; Ruiz V; Sanz R; Rumbo C; Ventosa E
    ChemSusChem; 2023 Dec; 16(24):e202300626. PubMed ID: 37399239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Electrochemical Stability of Sulfonated Anthraquinone-Based Acidic Electrolyte for Redox Flow Battery Application.
    Mazúr P; Charvát J; Mrlík J; Pocedič J; Akrman J; Kubáč L; Řeháková B; Kosek J
    Molecules; 2021 Apr; 26(9):. PubMed ID: 33923204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smart Flow Electrosynthesis and Application of Organodisulfides in Redox Flow Batteries.
    Chen Q; Guo W; Fu Y
    Adv Sci (Weinh); 2022 Jan; 9(1):e2104036. PubMed ID: 34761570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capacity Decay Mitigation by Asymmetric Positive/Negative Electrolyte Volumes in Vanadium Redox Flow Batteries.
    Park JH; Park JJ; Park OO; Yang JH
    ChemSusChem; 2016 Nov; 9(22):3181-3187. PubMed ID: 27767257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ferrocene and cobaltocene derivatives for non-aqueous redox flow batteries.
    Hwang B; Park MS; Kim K
    ChemSusChem; 2015 Jan; 8(2):310-4. PubMed ID: 25428116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ NMR metrology reveals reaction mechanisms in redox flow batteries.
    Zhao EW; Liu T; Jónsson E; Lee J; Temprano I; Jethwa RB; Wang A; Smith H; Carretero-González J; Song Q; Grey CP
    Nature; 2020 Mar; 579(7798):224-228. PubMed ID: 32123353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlating Stability and Performance of NaSICON Membranes for Aqueous Redox Flow Batteries.
    Modak S; Valle J; Tseng KT; Sakamoto J; Kwabi DG
    ACS Appl Mater Interfaces; 2022 May; 14(17):19332-19341. PubMed ID: 35442617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Six-electron organic redoxmers for aqueous redox flow batteries.
    Fang X; Cavazos AT; Li Z; Li C; Xie J; Wassall SR; Zhang L; Wei X
    Chem Commun (Camb); 2022 Nov; 58(95):13226-13229. PubMed ID: 36354121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capacity decay mechanism of microporous separator-based all-vanadium redox flow batteries and its recovery.
    Li B; Luo Q; Wei X; Nie Z; Thomsen E; Chen B; Sprenkle V; Wang W
    ChemSusChem; 2014 Feb; 7(2):577-84. PubMed ID: 24488680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzyme-Inspired Formulation of the Electrolyte for Stable and Efficient Vanadium Redox Flow Batteries at High Temperatures.
    Abbas S; Hwang J; Kim H; Chae SA; Kim JW; Mehboob S; Ahn A; Han OH; Ha HY
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):26842-26853. PubMed ID: 31268664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithium Ferrocyanide Catholyte for High-Energy and Low-cost Aqueous Redox Flow Batteries.
    Li X; Yao Y; Liu C; Jia X; Jian J; Guo B; Lu S; Qin W; Wang Q; Wu X
    Angew Chem Int Ed Engl; 2023 Jun; 62(25):e202304667. PubMed ID: 37081714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A neutral polysulfide/ferricyanide redox flow battery.
    Long Y; Xu Z; Wang G; Xu H; Yang M; Ding M; Yuan D; Yan C; Sun Q; Liu M; Jia C
    iScience; 2021 Oct; 24(10):103157. PubMed ID: 34646992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Power Near-Neutral Aqueous All Organic Redox Flow Battery Enabled with a Pair of Anionic Redox Species.
    Gao M; Salla M; Song Y; Wang Q
    Angew Chem Int Ed Engl; 2022 Oct; 61(41):e202208223. PubMed ID: 35997142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.