These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37328498)

  • 1. A reinforcement learning approach to airfoil shape optimization.
    Dussauge TP; Sung WJ; Pinon Fischer OJ; Mavris DN
    Sci Rep; 2023 Jun; 13(1):9753. PubMed ID: 37328498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric Airfoil Morphing via Deep Reinforcement Learning.
    Lu K; Fu Q; Cao R; Peng J; Wang Q
    Biomimetics (Basel); 2022 Nov; 7(4):. PubMed ID: 36412716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal design of aeroacoustic airfoils with owl-inspired trailing-edge serrations.
    Zhao M; Cao H; Zhang M; Liao C; Zhou T
    Bioinspir Biomim; 2021 Jul; 16(5):. PubMed ID: 34020442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Intelligent Method for Predicting the Pressure Coefficient Curve of Airfoil-Based Conditional Generative Adversarial Networks.
    Wang Y; Deng L; Wan Y; Yang Z; Yang W; Chen C; Zhao D; Wang F; Guo Y
    IEEE Trans Neural Netw Learn Syst; 2023 Jul; 34(7):3538-3552. PubMed ID: 34554920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-network collaborative lift-drag ratio prediction and airfoil optimization based on residual network and generative adversarial network.
    Zhao X; Wu W; Chen W; Lin Y; Ke J
    Front Bioeng Biotechnol; 2022; 10():927064. PubMed ID: 36147536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational and experimental study on the aerodynamic performance of NACA 4412 airfoil with slot and groove.
    Rayhan AM; Hossain MS; Mim RH; Ali M
    Heliyon; 2024 Jun; 10(11):e31595. PubMed ID: 38845868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physics-informed reinforcement learning for motion control of a fish-like swimming robot.
    Rodwell C; Tallapragada P
    Sci Rep; 2023 Jul; 13(1):10754. PubMed ID: 37400473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parameter study of simplified dragonfly airfoil geometry at Reynolds number of 6000.
    Levy DE; Seifert A
    J Theor Biol; 2010 Oct; 266(4):691-702. PubMed ID: 20673771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight.
    Vargas A; Mittal R; Dong H
    Bioinspir Biomim; 2008 Jun; 3(2):026004. PubMed ID: 18503106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil.
    Johnston J; Gopalarathnam A
    Bioinspir Biomim; 2012 Sep; 7(3):036003. PubMed ID: 22498691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive hierarchical reinforcement learning for path-efficient mapless navigation with moving target.
    Li H; Luo B; Song W; Yang C
    Neural Netw; 2023 Aug; 165():677-688. PubMed ID: 37385022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental investigation of multi-step airfoils in low Reynolds numbers applications.
    Aziz MA; Gaheen OA; Benini E; Elsayed AM
    Heliyon; 2024 Jun; 10(12):e32919. PubMed ID: 38994047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerodynamics of the flying snake Chrysopelea paradisi: how a bluff body cross-sectional shape contributes to gliding performance.
    Holden D; Socha JJ; Cardwell ND; Vlachos PP
    J Exp Biol; 2014 Feb; 217(Pt 3):382-94. PubMed ID: 24477611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the shape of flapping airfoils on aerodynamic forces.
    Butt F; Talha T; Khan R; Mazhar AR; Butt M; Petru J; Seikh AH
    Heliyon; 2024 Apr; 10(8):e29561. PubMed ID: 38665583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Method for remaining useful life prediction of rolling bearings based on deep reinforcement learning.
    Wang Y; Li Y; Lu H; Wang D
    Rev Sci Instrum; 2024 Sep; 95(9):. PubMed ID: 39283188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil.
    Wang Y; Zheng X; Hu R; Wang P
    PLoS One; 2016; 11(9):e0163443. PubMed ID: 27658310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep reinforcement learning for turbulent drag reduction in channel flows.
    Guastoni L; Rabault J; Schlatter P; Azizpour H; Vinuesa R
    Eur Phys J E Soft Matter; 2023 Apr; 46(4):27. PubMed ID: 37039923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-Hover Aerodynamic Analysis of a Small Rotor with a Thin Circular-Arc Airfoil and a Convex Structure at Low Reynolds Number.
    Lei Y; Wang J; Li Y; Gao Q
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerodynamic Analysis of Camber Morphing Airfoils in Transition via Computational Fluid Dynamics.
    Jo BW; Majid T
    Biomimetics (Basel); 2022 Apr; 7(2):. PubMed ID: 35645179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.