These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 37328498)

  • 21. Multifidelity kinematic parameter optimization of a flapping airfoil.
    Zheng H; Xie F; Ji T; Zhu Z; Zheng Y
    Phys Rev E; 2020 Jan; 101(1-1):013107. PubMed ID: 32069665
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical investigation on the aerodynamic efficiency of bio-inspired corrugated and cambered airfoils in ground effect.
    Abdizadeh GR; Farokhinejad M; Ghasemloo S
    Sci Rep; 2022 Nov; 12(1):19117. PubMed ID: 36351992
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control of chaotic systems by deep reinforcement learning.
    Bucci MA; Semeraro O; Allauzen A; Wisniewski G; Cordier L; Mathelin L
    Proc Math Phys Eng Sci; 2019 Nov; 475(2231):20190351. PubMed ID: 31824214
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Load alleviation of feather-inspired compliant airfoils for instantaneous flow control.
    Gamble LL; Harvey C; Inman DJ
    Bioinspir Biomim; 2020 Oct; 15(5):. PubMed ID: 32521517
    [TBL] [Abstract][Full Text] [Related]  

  • 25. STACoRe: Spatio-temporal and action-based contrastive representations for reinforcement learning in Atari.
    Lee YJ; Kim J; Kwak M; Park YJ; Kim SB
    Neural Netw; 2023 Mar; 160():1-11. PubMed ID: 36587439
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multi-Objective Aerodynamic Optimization of the Streamlined Shape of High-Speed Trains Based on the Kriging Model.
    Xu G; Liang X; Yao S; Chen D; Li Z
    PLoS One; 2017; 12(1):e0170803. PubMed ID: 28129365
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient Deep Reinforcement Learning With Imitative Expert Priors for Autonomous Driving.
    Huang Z; Wu J; Lv C
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; 34(10):7391-7403. PubMed ID: 35081030
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep Reinforcement Learning: A Survey.
    Wang X; Wang S; Liang X; Zhao D; Huang J; Xu X; Dai B; Miao Q
    IEEE Trans Neural Netw Learn Syst; 2024 Apr; 35(4):5064-5078. PubMed ID: 36170386
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep reinforcement learning and its applications in medical imaging and radiation therapy: a survey.
    Xu L; Zhu S; Wen N
    Phys Med Biol; 2022 Nov; 67(22):. PubMed ID: 36270582
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CFD study on NACA 4415 airfoil implementing spherical and sinusoidal Tubercle Leading Edge.
    Aftab SMA; Ahmad KA
    PLoS One; 2017; 12(8):e0183456. PubMed ID: 28850622
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative Analysis of the Self-Propelled Locomotion of a Pitching Airfoil near the Flat and Wavy Ground.
    Xin Z; Cai Z; Ren Y; Liu H
    Biomimetics (Basel); 2022 Dec; 7(4):. PubMed ID: 36546939
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-Supervised Discovering of Interpretable Features for Reinforcement Learning.
    Shi W; Huang G; Song S; Wang Z; Lin T; Wu C
    IEEE Trans Pattern Anal Mach Intell; 2022 May; 44(5):2712-2724. PubMed ID: 33186101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multi-fidelity information fusion with concatenated neural networks.
    Pawar S; San O; Vedula P; Rasheed A; Kvamsdal T
    Sci Rep; 2022 Apr; 12(1):5900. PubMed ID: 35393511
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep Reinforcement Learning-Based Task Scheduling in IoT Edge Computing.
    Sheng S; Chen P; Chen Z; Wu L; Yao Y
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33671072
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Algorithmic-driven design of shark denticle bioinspired structures for superior aerodynamic properties.
    Ott J; Lazalde M; Gu GX
    Bioinspir Biomim; 2020 Jan; 15(2):026001. PubMed ID: 31775125
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Approximate Policy-Based Accelerated Deep Reinforcement Learning.
    Wang X; Gu Y; Cheng Y; Liu A; Chen CLP
    IEEE Trans Neural Netw Learn Syst; 2020 Jun; 31(6):1820-1830. PubMed ID: 31398131
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Edge-Sensitive Left Ventricle Segmentation Using Deep Reinforcement Learning.
    Xiong J; Po LM; Cheung KW; Xian P; Zhao Y; Rehman YAU; Zhang Y
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33805558
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational Investigations on the Effects of Gurney Flap on Airfoil Aerodynamics.
    Jain S; Sitaram N; Krishnaswamy S
    Int Sch Res Notices; 2015; 2015():402358. PubMed ID: 27347517
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep reinforcement learning for automated radiation adaptation in lung cancer.
    Tseng HH; Luo Y; Cui S; Chien JT; Ten Haken RK; Naqa IE
    Med Phys; 2017 Dec; 44(12):6690-6705. PubMed ID: 29034482
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intelligent design of the chiral metasurfaces for flexible targets: combining a deep neural network with a policy proximal optimization algorithm.
    Liao X; Gui L; Gao A; Yu Z; Xu K
    Opt Express; 2022 Oct; 30(22):39582-39596. PubMed ID: 36298906
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.