These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37328554)

  • 1. An analysis of the climate change effects on pesticide vapor drift from ground-based pesticide applications to cotton.
    Kannan N
    Sci Rep; 2023 Jun; 13(1):9740. PubMed ID: 37328554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of field-scale spray drift deposition and non-target plant biological sensitivity: a corn herbicide (mesotrione/s-metolochlor) case study.
    Perkins DB; Abi-Akar F; Goodwin G; Brain RA
    Pest Manag Sci; 2022 Jul; 78(7):3193-3206. PubMed ID: 35488378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying vapor drift of dicamba herbicides applied to soybean.
    Egan JF; Mortensen DA
    Environ Toxicol Chem; 2012 May; 31(5):1023-31. PubMed ID: 22362509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-scale evaluation of physical drift and volatility of 2,4-D choline in cotton: a four-year field study.
    Hwang JI; Norsworthy JK; Houston MM; Piveta LB; Priess GL; Zaccaro-Gruener ML; Barber LT; Butts TR
    Pest Manag Sci; 2022 Aug; 78(8):3337-3344. PubMed ID: 35490278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors affecting aerial spray drift in the Brazilian Cerrado.
    Baio FHR; Antuniassi UR; Castilho BR; Teodoro PE; Silva EED
    PLoS One; 2019; 14(2):e0212289. PubMed ID: 30779797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate Change, Pesticides and Health: Considering the Risks and Opportunities of Adaptation for Zimbabwean Smallholder Cotton Growers.
    Zinyemba C; Archer E; Rother HA
    Int J Environ Res Public Health; 2020 Dec; 18(1):. PubMed ID: 33375332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Examining the role of wind in human illness due to pesticide drift in Washington state, 2000-2015.
    Kasner EJ; Prado JB; Yost MG; Fenske RA
    Environ Health; 2021 Mar; 20(1):26. PubMed ID: 33722241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaporation drift of pesticides active ingredients.
    De Schampheleire M; Nuyttens D; De Keyser D; Spanoghe P
    Commun Agric Appl Biol Sci; 2008; 73(4):739-42. PubMed ID: 19226822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pesticides in ambient air, influenced by surrounding land use and weather, pose a potential threat to biodiversity and humans.
    Zaller JG; Kruse-Plaß M; Schlechtriemen U; Gruber E; Peer M; Nadeem I; Formayer H; Hutter HP; Landler L
    Sci Total Environ; 2022 Sep; 838(Pt 2):156012. PubMed ID: 35597361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of Wind Speed and Direction and Key Meteorological Parameters on Potential Pesticide Drift Mass Loadings from Sequential Aerial Applications.
    Desmarteau DA; Ritter AM; Hendley P; Guevara MW
    Integr Environ Assess Manag; 2020 Mar; 16(2):197-210. PubMed ID: 31589364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solar radiation, relative humidity, and soil water effects on metolachlor volatilization.
    Prueger JH; Gish TJ; McConnell LL; Mckee LG; Hatfield JL; Kustas WP
    Environ Sci Technol; 2005 Jul; 39(14):5219-26. PubMed ID: 16082950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasing minimum daily temperatures are associated with enhanced pesticide use in cultivated soybean along a latitudinal gradient in the mid-western United States.
    Ziska LH
    PLoS One; 2014; 9(2):e98516. PubMed ID: 24918585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting pesticide emissions and downwind concentrations using correlations with estimated vapor pressures.
    Woodrow JE; Seiber JN; Dary C
    J Agric Food Chem; 2001 Aug; 49(8):3841-6. PubMed ID: 11513676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An improved screening tool for predicting volatilization of pesticides applied to soils.
    Davie-Martin CL; Hageman KJ; Chin YP
    Environ Sci Technol; 2013 Jan; 47(2):868-76. PubMed ID: 23214927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pesticides and Related Toxicants in the Atmosphere.
    Woodrow JE; Gibson KA; Seiber JN
    Rev Environ Contam Toxicol; 2019; 247():147-196. PubMed ID: 30535549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of pesticides volatilization potential based on their molecular properties using the TyPol tool.
    Mamy L; Bonnot K; Benoit P; Bockstaller C; Latrille E; Rossard V; Servien R; Patureau D; Prevost L; Pierlot F; Bedos C
    J Hazard Mater; 2021 Aug; 415():125613. PubMed ID: 34088172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of natural windbreaks on drift reduction in orchard spraying.
    Wenneker M; Heijne B; van de Zande JC
    Commun Agric Appl Biol Sci; 2005; 70(4):961-9. PubMed ID: 16628943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies for reducing airborne pesticides under tropical conditions.
    Langenbach T; Caldas LQ
    Ambio; 2018 Sep; 47(5):574-584. PubMed ID: 29243054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particle drift simulation from mesotrione and rimsulfuron plus thifensulfuron-methyl mixture through two nozzle types to field and vegetable crops.
    Brankov M; Alves GS; Vieira BC; Zaric M; Vukoja B; Houston T; Kruger GR
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):38226-38238. PubMed ID: 36580245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.