These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 37328692)

  • 1. A feature extraction free approach for protein interactome inference from co-elution data.
    Chen YH; Chao KH; Wong JY; Liu CF; Leu JY; Tsai HK
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37328692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rapid and accurate approach for prediction of interactomes from co-elution data (PrInCE).
    Stacey RG; Skinnider MA; Scott NE; Foster LJ
    BMC Bioinformatics; 2017 Oct; 18(1):457. PubMed ID: 29061110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidating the dynamic remodelling of Escherichia coli interactome in different growth conditions using multiplex co-fractionation MS (mCF-MS).
    Low TY
    Proteomics; 2023 Nov; 23(21-22):e2300209. PubMed ID: 37986683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SPRINT: ultrafast protein-protein interaction prediction of the entire human interactome.
    Li Y; Ilie L
    BMC Bioinformatics; 2017 Nov; 18(1):485. PubMed ID: 29141584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EPIC: software toolkit for elution profile-based inference of protein complexes.
    Hu LZ; Goebels F; Tan JH; Wolf E; Kuzmanov U; Wan C; Phanse S; Xu C; Schertzberg M; Fraser AG; Bader GD; Emili A
    Nat Methods; 2019 Aug; 16(8):737-742. PubMed ID: 31308550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trends in co-fractionation mass spectrometry: A new gold-standard in global protein interaction network discovery.
    Goel RK; Bithi N; Emili A
    Curr Opin Struct Biol; 2024 Oct; 88():102880. PubMed ID: 38996623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of data-independent acquisition (DIA) with co-fractionation mass spectrometry (CF-MS) to enhance interactome mapping capabilities.
    Hay BN; Akinlaja MO; Baker TC; Houfani AA; Stacey RG; Foster LJ
    Proteomics; 2023 Nov; 23(21-22):e2200278. PubMed ID: 37144656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PROMISed: A novel web-based tool to facilitate analysis and visualization of the molecular interaction networks from co-fractionation mass spectrometry (CF-MS) experiments.
    Schlossarek D; Luzarowski M; Sokołowska E; Górka M; Willmitzer L; Skirycz A
    Comput Struct Biotechnol J; 2021; 19():5117-5125. PubMed ID: 34589187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the Detection of Protein Complexes by Predicting Novel Missing Interactome Links in the Protein-Protein Interaction Network.
    Zaki N; Alashwal H
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5041-5044. PubMed ID: 30441473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A sampling framework for incorporating quantitative mass spectrometry data in protein interaction analysis.
    Tucker G; Loh PR; Berger B
    BMC Bioinformatics; 2013 Oct; 14():299. PubMed ID: 24093595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Completing sparse and disconnected protein-protein network by deep learning.
    Huang L; Liao L; Wu CH
    BMC Bioinformatics; 2018 Mar; 19(1):103. PubMed ID: 29566671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network-based protein-protein interaction prediction method maps perturbations of cancer interactome.
    Qiu J; Chen K; Zhong C; Zhu S; Ma X
    PLoS Genet; 2021 Nov; 17(11):e1009869. PubMed ID: 34727106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic remodeling of Escherichia coli interactome in response to environmental perturbations.
    Youssef A; Bian F; Paniikov NS; Crovella M; Emili A
    Proteomics; 2023 Nov; 23(21-22):e2200404. PubMed ID: 37248827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein Inference from the Integration of Tandem MS Data and Interactome Networks.
    Zhong J; Wang J; Ding X; Zhang Z; Li M; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(6):1399-1409. PubMed ID: 28113634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multi-network clustering method for detecting protein complexes from multiple heterogeneous networks.
    Ou-Yang L; Yan H; Zhang XF
    BMC Bioinformatics; 2017 Dec; 18(Suppl 13):463. PubMed ID: 29219066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homology-based prediction of interactions between proteins using Averaged One-Dependence Estimators.
    Murakami Y; Mizuguchi K
    BMC Bioinformatics; 2014 Jun; 15():213. PubMed ID: 24953126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of protein sequence and protein-protein interaction data by hypergraph learning to identify novel protein complexes.
    Xia S; Li D; Deng X; Liu Z; Zhu H; Liu Y; Li D
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38851299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Next-generation Interactomics: Considerations for the Use of Co-elution to Measure Protein Interaction Networks.
    Salas D; Stacey RG; Akinlaja M; Foster LJ
    Mol Cell Proteomics; 2020 Jan; 19(1):1-10. PubMed ID: 31792070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting protein-protein interactions through sequence-based deep learning.
    Hashemifar S; Neyshabur B; Khan AA; Xu J
    Bioinformatics; 2018 Sep; 34(17):i802-i810. PubMed ID: 30423091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis.
    You ZH; Lei YK; Zhu L; Xia J; Wang B
    BMC Bioinformatics; 2013; 14 Suppl 8(Suppl 8):S10. PubMed ID: 23815620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.