BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37328923)

  • 1. Photoresponsive Rotaxane-Branched Dendrimers: From Nanoscale Dimension Modulation to Macroscopic Soft Actuators.
    Li WJ; Xu WT; Wang XQ; Jiang Y; Zhu Y; Zhang DY; Xu XQ; Hu LR; Wang W; Yang HB
    J Am Chem Soc; 2023 Jul; 145(26):14498-14509. PubMed ID: 37328923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual stimuli-responsive rotaxane-branched dendrimers with reversible dimension modulation.
    Wang XQ; Wang W; Li WJ; Chen LJ; Yao R; Yin GQ; Wang YX; Zhang Y; Huang J; Tan H; Yu Y; Li X; Xu L; Yang HB
    Nat Commun; 2018 Aug; 9(1):3190. PubMed ID: 30093667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of Type III-C Rotaxane-Branched Dendrimers and Their Anion-Induced Dimension Modulation Feature.
    Wang XQ; Li WJ; Wang W; Wen J; Zhang Y; Tan H; Yang HB
    J Am Chem Soc; 2019 Sep; 141(35):13923-13930. PubMed ID: 31411028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rotaxane Dendrimers: Alliance between Giants.
    Wang XQ; Li WJ; Wang W; Yang HB
    Acc Chem Res; 2021 Nov; 54(21):4091-4106. PubMed ID: 34676764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial Light-Harvesting Systems Based on AIEgen-branched Rotaxane Dendrimers for Efficient Photocatalysis.
    Li WJ; Wang XQ; Zhang DY; Hu YX; Xu WT; Xu L; Wang W; Yang HB
    Angew Chem Int Ed Engl; 2021 Aug; 60(34):18761-18768. PubMed ID: 34125487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Daisy Chain Dendrimers: Integrated Mechanically Interlocked Molecules with Stimuli-Induced Dimension Modulation Feature.
    Li WJ; Wang W; Wang XQ; Li M; Ke Y; Yao R; Wen J; Yin GQ; Jiang B; Li X; Yin P; Yang HB
    J Am Chem Soc; 2020 May; 142(18):8473-8482. PubMed ID: 32302108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rotaxane-Branched Dendrimers with Enhanced Photosensitization.
    Li WJ; Hu Z; Xu L; Wang XQ; Wang W; Yin GQ; Zhang DY; Sun Z; Li X; Sun H; Yang HB
    J Am Chem Soc; 2020 Sep; 142(39):16748-16756. PubMed ID: 32869633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-controllable cucurbit[7]uril-based molecular shuttle.
    Zhu L; Yan H; Wang XJ; Zhao Y
    J Org Chem; 2012 Nov; 77(22):10168-75. PubMed ID: 23113541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organometallic rotaxane dendrimers with fourth-generation mechanically interlocked branches.
    Wang W; Chen LJ; Wang XQ; Sun B; Li X; Zhang Y; Shi J; Yu Y; Zhang L; Liu M; Yang HB
    Proc Natl Acad Sci U S A; 2015 May; 112(18):5597-601. PubMed ID: 25902491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimuli-responsive rotaxane-branched dendronized polymers with tunable thermal and rheological properties.
    Zhu Y; Jiang H; Wu W; Xu XQ; Wang XQ; Li WJ; Xu WT; Liu G; Ke Y; Wang W; Yang HB
    Nat Commun; 2023 Aug; 14(1):5307. PubMed ID: 37652914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvent-Free Photoresponsive Artificial Muscles Rapidly Driven by Molecular Machines.
    Ikejiri S; Takashima Y; Osaki M; Yamaguchi H; Harada A
    J Am Chem Soc; 2018 Dec; 140(49):17308-17315. PubMed ID: 30415536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controllable photomechanical bending of metal-organic rotaxane crystals facilitated by regioselective confined-space photodimerization.
    Geng JS; Mei L; Liang YY; Yuan LY; Yu JP; Hu KQ; Yuan LH; Feng W; Chai ZF; Shi WQ
    Nat Commun; 2022 Apr; 13(1):2030. PubMed ID: 35440111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoactivated Artificial Molecular Machines that Can Perform Tasks.
    Corra S; Curcio M; Baroncini M; Silvi S; Credi A
    Adv Mater; 2020 May; 32(20):e1906064. PubMed ID: 31957172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rotaxane-based molecular muscles.
    Bruns CJ; Stoddart JF
    Acc Chem Res; 2014 Jul; 47(7):2186-99. PubMed ID: 24877992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward high-generation rotaxane dendrimers that incorporate a ring component on every branch: noncovalent synthesis of a dendritic [10]pseudorotaxane with 13 molecular components.
    Kim SY; Ko YH; Lee JW; Sakamoto S; Yamaguchi K; Kim K
    Chem Asian J; 2007 Jun; 2(6):747-54. PubMed ID: 17479998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotaxane dendrimers.
    Lee JW; Kim K
    Top Curr Chem; 2003; 228():111-40. PubMed ID: 21132482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoresponsive Supramolecular Polymers: From Light-Controlled Small Molecules to Smart Materials.
    Xu F; Feringa BL
    Adv Mater; 2023 Mar; 35(10):e2204413. PubMed ID: 36239270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A [3]rotaxane with three stable states that responds to multiple-inputs and displays dual fluorescence addresses.
    Qu DH; Wang QC; Ma X; Tian H
    Chemistry; 2005 Oct; 11(20):5929-37. PubMed ID: 16044474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-Stimulus-Driven Dynamically Controllable [3]Rotaxane with Tunable Organic Room-Temperature Phosphorescence.
    Liu G; Tian C; Fan X; Dang Y; Qin J; Liu L; Cao Z; Jiang S
    Org Lett; 2023 Dec; 25(48):8761-8765. PubMed ID: 38019050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast response dry-type artificial molecular muscles with [c2]daisy chains.
    Iwaso K; Takashima Y; Harada A
    Nat Chem; 2016 Jun; 8(6):625-32. PubMed ID: 27219709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.