These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37328973)

  • 1. Entry of microparticles into giant lipid vesicles by optical tweezers.
    Fessler F; Sharma V; Muller P; Stocco A
    Phys Rev E; 2023 May; 107(5):L052601. PubMed ID: 37328973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microparticle Assembly Pathways on Lipid Membranes.
    van der Wel C; Heinrich D; Kraft DJ
    Biophys J; 2017 Sep; 113(5):1037-1046. PubMed ID: 28877487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active colloids orbiting giant vesicles.
    Sharma V; Azar E; Schroder AP; Marques CM; Stocco A
    Soft Matter; 2021 Apr; 17(16):4275-4281. PubMed ID: 33687403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-molecule manipulation of macromolecules on GUV or SUV membranes using optical tweezers.
    Wang Y; Kumar A; Jin H; Zhang Y
    Biophys J; 2021 Dec; 120(24):5454-5465. PubMed ID: 34813728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring local properties inside a cell-mimicking structure using rotating optical tweezers.
    Zhang S; Gibson LJ; Stilgoe AB; Nieminen TA; Rubinsztein-Dunlop H
    J Biophotonics; 2019 Jul; 12(7):e201900022. PubMed ID: 30779305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal fluctuations of the lipid membrane determine particle uptake into Giant Unilamellar Vesicles.
    Ayala YA; Omidvar R; Römer W; Rohrbach A
    Nat Commun; 2023 Jan; 14(1):65. PubMed ID: 36599837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic production and characterization of biofunctionalized giant unilamellar vesicles for targeted intracellular cargo delivery.
    Staufer O; Antona S; Zhang D; Csatári J; Schröter M; Janiesch JW; Fabritz S; Berger I; Platzman I; Spatz JP
    Biomaterials; 2021 Jan; 264():120203. PubMed ID: 32987317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of membrane rigidity on trapped unilamellar phospholipid vesicles by using differential confocal microscopy.
    Liu TH; Xiao JL; Lee CH; Lin JY
    Appl Opt; 2011 Jul; 50(19):3311-5. PubMed ID: 21743534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opto-Thermophoretic Attraction, Trapping, and Dynamic Manipulation of Lipid Vesicles.
    Hill EH; Li J; Lin L; Liu Y; Zheng Y
    Langmuir; 2018 Nov; 34(44):13252-13262. PubMed ID: 30350700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of giant unilamellar vesicles to study functional properties of pore-forming toxins.
    Aden S; Snoj T; Anderluh G
    Methods Enzymol; 2021; 649():219-251. PubMed ID: 33712188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman Spectroscopy Study of Curvature-Mediated Lipid Packing and Sorting in Single Lipid Vesicles.
    Collard L; Sinjab F; Notingher I
    Biophys J; 2019 Nov; 117(9):1589-1598. PubMed ID: 31587827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing lipids for selective partitioning into liquid ordered membrane domains.
    Momin N; Lee S; Gadok AK; Busch DJ; Bachand GD; Hayden CC; Stachowiak JC; Sasaki DY
    Soft Matter; 2015 Apr; 11(16):3241-50. PubMed ID: 25772372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viscoelastic deformation of lipid bilayer vesicles.
    Wu SH; Sankhagowit S; Biswas R; Wu S; Povinelli ML; Malmstadt N
    Soft Matter; 2015 Oct; 11(37):7385-91. PubMed ID: 26268612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of surface chemistry on particle internalization into giant unilamellar vesicles.
    Liu J; Lu N; Li J; Weng Y; Yuan B; Yang K; Ma Y
    Langmuir; 2013 Jun; 29(25):8039-45. PubMed ID: 23738716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes.
    Kamiya K; Kawano R; Osaki T; Akiyoshi K; Takeuchi S
    Nat Chem; 2016 Sep; 8(9):881-9. PubMed ID: 27554415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. cDICE method produces giant lipid vesicles under physiological conditions of charged lipids and ionic solutions.
    Blosser MC; Horst BG; Keller SL
    Soft Matter; 2016 Sep; 12(35):7364-71. PubMed ID: 27510092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-chip generation of monodisperse giant unilamellar lipid vesicles containing quantum dots.
    Park YH; Lee DH; Um E; Park JK
    Electrophoresis; 2016 May; 37(10):1353-8. PubMed ID: 26920999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulling Membrane Nanotubes from Giant Unilamellar Vesicles.
    Prévost C; Tsai FC; Bassereau P; Simunovic M
    J Vis Exp; 2017 Dec; (130):. PubMed ID: 29286431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Curved membrane structures induced by native lipids in giant vesicles.
    Nair KS; Raj NB; Nampoothiri KM; Mohanan G; Acosta-Gutiérrez S; Bajaj H
    J Colloid Interface Sci; 2022 Apr; 611():397-407. PubMed ID: 34963074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative optical microscopy and micromanipulation studies on the lipid bilayer membranes of giant unilamellar vesicles.
    Bagatolli LA; Needham D
    Chem Phys Lipids; 2014 Jul; 181():99-120. PubMed ID: 24632023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.