These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37328983)

  • 21. Active phase field crystal systems with inertial delay and underdamped dynamics.
    Arold D; Schmiedeberg M
    Eur Phys J E Soft Matter; 2020 Jul; 43(7):47. PubMed ID: 32642832
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fully Steerable Symmetric Thermoplasmonic Microswimmers.
    Fränzl M; Muiños-Landin S; Holubec V; Cichos F
    ACS Nano; 2021 Feb; 15(2):3434-3440. PubMed ID: 33556235
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phase transition and emergence of active temperature in an active Brownian system in underdamped background.
    De Karmakar S; Ganesh R
    Phys Rev E; 2020 Mar; 101(3-1):032121. PubMed ID: 32290015
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bouncing dynamics of inertial self-propelled particles reveals directional asymmetry.
    Horvath D; Slabý C; Tomori Z; Hovan A; Miskovsky P; Bánó G
    Phys Rev E; 2023 Feb; 107(2-1):024603. PubMed ID: 36932604
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anisotropic active Brownian particle with a fluctuating propulsion force.
    Thiffeault JL; Guo J
    Phys Rev E; 2022 Jul; 106(1):L012603. PubMed ID: 35974529
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-propelled Janus particles in a ratchet: numerical simulations.
    Ghosh PK; Misko VR; Marchesoni F; Nori F
    Phys Rev Lett; 2013 Jun; 110(26):268301. PubMed ID: 23848928
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Escape kinetics of self-propelled particles from a circular cavity.
    Debnath T; Chaudhury P; Mukherjee T; Mondal D; Ghosh PK
    J Chem Phys; 2021 Nov; 155(19):194102. PubMed ID: 34800947
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple current reversals and diffusion enhancement in a symmetrical periodic potential.
    Zeng C; Wang H; Nie L
    Chaos; 2012 Sep; 22(3):033125. PubMed ID: 23020464
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transport of a heated granular gas in a washboard potential.
    Costantini G; Cecconi F; Marini-Bettolo-Marconi U
    J Chem Phys; 2006 Nov; 125(20):204711. PubMed ID: 17144727
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Collective motion of active Brownian particles with polar alignment.
    Martín-Gómez A; Levis D; Díaz-Guilera A; Pagonabarraga I
    Soft Matter; 2018 Apr; 14(14):2610-2618. PubMed ID: 29569673
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pressure of a gas of underdamped active dumbbells.
    Joyeux M; Bertin E
    Phys Rev E; 2016 Mar; 93(3):032605. PubMed ID: 27078412
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Entropy production of a Brownian ellipsoid in the overdamped limit.
    Marino R; Eichhorn R; Aurell E
    Phys Rev E; 2016 Jan; 93(1):012132. PubMed ID: 26871049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of inertia on conformation and dynamics of tangentially driven active filaments.
    Fazelzadeh M; Irani E; Mokhtari Z; Jabbari-Farouji S
    Phys Rev E; 2023 Aug; 108(2-1):024606. PubMed ID: 37723735
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inertial effects on trapped active matter.
    Gutierrez-Martinez LL; Sandoval M
    J Chem Phys; 2020 Jul; 153(4):044906. PubMed ID: 32752692
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Brownian motion of a self-propelled particle.
    ten Hagen B; van Teeffelen S; Löwen H
    J Phys Condens Matter; 2011 May; 23(19):194119. PubMed ID: 21525563
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microscopic derivation of the hydrodynamics of active-Brownian-particle suspensions.
    Steffenoni S; Falasco G; Kroy K
    Phys Rev E; 2017 May; 95(5-1):052142. PubMed ID: 28618517
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Brownian particles in stationary and moving traps: the mean and variance of the heat distribution function.
    Chatterjee D; Cherayil BJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011118. PubMed ID: 19658664
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Collective behavior of penetrable self-propelled rods in two dimensions.
    Abkenar M; Marx K; Auth T; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062314. PubMed ID: 24483451
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Work and heat distributions of an inertial Brownian particle.
    Colmenares PJ
    Phys Rev E; 2022 Apr; 105(4-1):044109. PubMed ID: 35590566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Time-dependent inertia of self-propelled particles: The Langevin rocket.
    Sprenger AR; Jahanshahi S; Ivlev AV; Löwen H
    Phys Rev E; 2021 Apr; 103(4-1):042601. PubMed ID: 34005997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.